PuSH - Publication Server of Helmholtz Zentrum München

Reber, J. ; Willershäuser, M.* ; Karlas, A. ; Paul-Yuan, K. ; Diot, G. ; Franz, D.* ; Fromme, T.* ; Ovsepian, S.V. ; Bézière, N. ; Dubikovskaya, E.* ; Karampinos, D.C.* ; Holzapfel, C.* ; Hauner, H.* ; Klingenspor, M.* ; Ntziachristos, V.

Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients.

Cell Metab. 27, 689-701.e4 (2018)
Publ. Version/Full Text Postprint DOI PMC
Open Access Green
Metabolism is a fundamental process of life. However, non-invasive measurement of local tissue metabolism is limited today by a deficiency in adequate tools for in vivo observations. We designed a multi-modular platform that explored the relation between local tissue oxygen consumption, determined by label-free optoacoustic measurements of hemoglobin, and concurrent indirect calorimetry obtained during metabolic activation of brown adipose tissue (BAT). By studying mice and humans, we show how video-rate handheld multi-spectral optoacoustic tomography (MSOT) in the 700-970 nm spectral range enables non-invasive imaging of BAT activation, consistent with positron emission tomography findings. Moreover, we observe BAT composition differences between healthy and diabetic tissues. The study consolidates hemoglobin as a principal label-free biomarker for longitudinal non-invasive imaging of BAT morphology and bioenergetics in situ. We also resolve water and fat components in volunteers, and contrast MSOT readouts with magnetic resonance imaging data.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Msot ; Blood Oxygenation ; Brown Adipose Tissue ; Indirect Calorimetry ; Magnetic Resonance Imaging ; Metabolic Imaging ; Multispectral Imaging ; Optoacoustic, Photoacoustic ; Positron Emission Tomography; Cold-acclimated Rats; Adipose-tissue; Nonshivering Thermogenesis; Blood-flow; Adult Humans; In-vivo; Tomography; Quantification; Noradrenaline; Contributes
ISSN (print) / ISBN 1550-4131
e-ISSN 1932-7420
Journal Cell Metabolism
Quellenangaben Volume: 27, Issue: 3, Pages: 689-701.e4 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place Cambridge
Non-patent literature Publications
Reviewing status Peer reviewed