Mahajan, A.* ; Wessel, J.* ; Willems, S.M.* ; Zhao, W.* ; Robertson, N.R.* ; Chu, A.Y.* ; Gan, W.* ; Kitajima, H.* ; Taliun, D.* ; Rayner, N.W.* ; Guo, X.* ; Lu, Y.* ; Li, M.* ; Jensen, R.A.* ; Hu, Y.* ; Huo, S.* ; Lohman, K.K.* ; Zhang, W.* ; Cook, J.P.* ; Prins, B.P.* ; Flannick, J.* ; Grarup, N.* ; Trubetskoy, V.V.* ; Kravic, J.* ; Kim, Y.J.* ; Rybin, D.V.* ; Yaghootkar, H.* ; Müller-Nurasyid, M. ; Meidtner, K.* ; Li-Gao, R.* ; Varga, T.V.* ; Marten, J.* ; Li, J.* ; Smith, A.V.* ; An, P.* ; Ligthart, S.* ; Gustafsson, S.* ; Malerba, G.* ; Demirkan, A.* ; Tajes, J.F.* ; Steinthorsdottir, V.* ; Wuttke, M.* ; Lecoeur, C.* ; Preuss, M.* ; Bielak, L.F.* ; Graff, M.* ; Highland, H.M.* ; Justice, A.E.* ; Liu, D.J.* ; Marouli, E.* ; Peloso, G.M.* ; Warren, H.R.* ; Afaq, S.* ; Afzal, S.* ; Ahlqvist, E.* ; Almgren, P.* ; Amin, N.* ; Bang, L.B.* ; Bertoni, A.G.* ; Bombieri, C.* ; Bork-Jensen, J.* ; Brandslund, I.* ; Brody, J.A.* ; Burtt, N.P.* ; Canouil, M.* ; Chen, Y.I.* ; Cho, Y.S.* ; Christensen, C.* ; Eastwood, S.V.* ; Eckardt, K.U.* ; Fischer, K.* ; Gambaro, G.* ; Giedraitis, V.* ; Grove, M.L.* ; de Haan, H.G.* ; Hackinger, S.* ; Hai, Y.* ; Han, S.* ; Tybjærg-Hansen, A.* ; Hivert, M.F.* ; Isomaa, B.* ; Jäger, S.* ; Jørgensen, M.E.* ; Jørgensen, T.* ; Käräjämäki, A.* ; Kim, B.J.* ; Kim, S.S.* ; Koistinen, H.A.* ; Kovacs, P.* ; Kriebel, J. ; Kronenberg, F.* ; Läll, K.* ; Lange, L.A.* ; Lee, J.J.* ; Lehne, B.* ; Li, H.* ; Lin, K.H.* ; Linneberg, A.* ; Liu, C.-T.* ; Liu, J.* ; Loh, M.* ; Mägi, R.* ; Mamakou, V.* ; McKean-Cowdin, R.* ; Nadkarni, G.* ; Neville, M.* ; Nielsen, S.F.* ; Ntalla, I.* ; Peyser, P.A.* ; Rathmann, W.* ; Rice, K.* ; Rich, S.S.* ; Rode, L.* ; Rolandsson, O.* ; Schönherr, S.* ; Selvin, E.* ; Small, K.S.* ; Stancáková, A.* ; Surendran, P.* ; Taylor, K.D.* ; Teslovich, T.M.* ; Thorand, B. ; Thorleifsson, G.* ; Tin, A.* ; Tönjes, A.* ; Varbo, A.* ; Witte, D.R.* ; Wood, A.R.* ; Yajnik, P.* ; Yao, J.* ; Yengo, L.* ; Young, R.* ; Amouyel, P.* ; Boeing, H.* ; Boerwinkle, E.* ; Bottinger, E.P.* ; Chowdhury, R.* ; Collins, F.S.* ; Dedoussis, G.* ; Dehghan, A.* ; Deloukas, P.* ; Ferrario, M.M.* ; Ferrieres, J.* ; Florez, J.C* ; Frossard, P.* ; Gudnason, V.* ; Harris, T.B.* ; Heckbert, S.R.* ; Howson, J.M.M.* ; Ingelsson, M.* ; Kathiresan, S.* ; Kee, F.* ; Kuusisto, J.* ; Langenberg, C.* ; Launer, L.J.* ; Lindgren, C.M.* ; Männistö, S.* ; Meitinger, T. ; Melander, O.* ; Mohlke, K.L.* ; Moitry, M.* ; Morris, A.D.* ; Murray, A.D.* ; de Mutsert, R.* ; Orho-Melander, M.* ; Owen, K.R.* ; Perola, M.* ; Peters, A. ; Province, M.A.* ; Rasheed, A.* ; Ridker, P.M.* ; Rivadeneira, F.* ; Rosendaal, F.R.* ; Rosengren, A.H.* ; Salomaa, V.* ; Sheu, W.H.* ; Sladek, R.* ; Smith, B.H.* ; Strauch, K. ; Uitterlinden, A.G.* ; Varma, R.* ; Willer, C.J.* ; Blüher, M.* ; Butterworth, A.S.* ; Chambers, J.C.* ; Chasman, D.I.* ; Danesh, J.* ; van Duijn, C.M.* ; Dupuis, J.* ; Franco, O.H.* ; Franks, P.W.* ; Froguel, P.* ; Grallert, H. ; Groop, L.* ; Han, B.G.* ; Hansen, T.* ; Hattersley, A.T.* ; Hayward, C.* ; Ingelsson, E.* ; Kardia, S.L.R.* ; Karpe, F.* ; Kooner, J.S.* ; Köttgen, A.* ; Kuulasmaa, K.* ; Laakso, M.* ; Lin, X.* ; Lind, L.* ; Liu, Y.* ; Loos, R.J.F.* ; Marchini, J.* ; Metspalu, A.* ; Mook-Kanamori, D.O.* ; Nørdestgaard, B.G.* ; Palmer, C.N.A.* ; Pankow, J.S.* ; Pedersen, O.* ; Psaty, B.M.* ; Rauramaa, R.* ; Sattar, N.* ; Schulze, M.B.* ; Soranzo, N.* ; Spector, T.D.* ; Stefansson, K.* ; Stumvoll, M.* ; Thorsteinsdottir, U.* ; Tuomi, T.* ; Tuomilehto, J.* ; Wareham, N.J.* ; Wilson, J.G.* ; Zeggini, E.* ; Scott, R.A.* ; Barroso, I.* ; Frayling, T.M.* ; Goodarzi, M.O.* ; Meigs, J.B.* ; Boehnke, M.* ; Saleheen, D.* ; Morris, A.P.* ; Rotter, J.I.* ; McCarthy, M.I.*
Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.
Nat. Genet. 50, 559-571 (2018)
We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Keywords plus
Language
english
Publication Year
2018
Prepublished in Year
HGF-reported in Year
2018
ISSN (print) / ISBN
1061-4036
e-ISSN
1546-1718
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 50,
Issue: 4,
Pages: 559-571
Article Number: ,
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
New York, NY
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
30202 - Environmental Health
90000 - German Center for Diabetes Research
Research field(s)
Genetics and Epidemiology
PSP Element(s)
G-504100-001
G-504000-002
G-501900-402
G-504091-002
G-500700-001
Grants
Copyright
Erfassungsdatum
2018-05-18