PuSH - Publication Server of Helmholtz Zentrum München

Schmitt, F.C.F.* ; Salgado, E.* ; Friebe, J.* ; Schmoch, T.* ; Uhle, F.* ; Fleming, T.* ; Zemva, J.* ; Kihm, L.* ; Nusshag, C.* ; Morath, C.* ; Zeier, M.* ; Bruckner, T.* ; Mehrabi, A.* ; Nawroth, P.P. ; Weigand, M.A.* ; Hofer, S.* ; Brenner, T.*

Cell cycle arrest and cell death correlate with the extent of ischaemia and reperfusion injury in patients following kidney transplantation – results of an observational pilot study.

Transpl. Int. 31, 751-760 (2018)
Publ. Version/Full Text DOI PMC
Free by publisher
Open Access Green as soon as Postprint is submitted to ZB.
Steunstichting ESOT A prolonged cold ischaemia time (CIT) is suspected to be associated with an increased ischaemia and reperfusion injury (IRI) resulting in an increased damage to the graft. In total, 91 patients were evaluated for a delayed graft function within 7 days after kidney transplantation (48 deceased, 43 living donors). Blood and urine samples were collected before, immediately after the operation, and 1, 3, 5, 7 and 10 days later. Plasma and/or urine levels of total keratin 18 (total K18), caspase-cleaved keratin 18 (cc K18), the soluble receptor for advanced glycation end products (sRAGE), tissue inhibitor of metalloproteinase-2 (TIMP-2) and insulin-like growth factor-binding protein-7 (IGFBP7) were measured. As a result of prolonged CIT and increased IRI, deceased donor transplantations were shown to suffer from a more distinct cell cycle arrest and necrotic cell death. Plasmatic total K18 and urinary TIMP-2 and IGFBP7 were therefore demonstrated to be of value for the detection of a delayed graft function (DGF), as they improved the diagnostic performance of a routinely used clinical scoring system. Plasmatic total K18 and urinary TIMP-2 and IGFBP7 measurements are potentially suitable for early identification of patients at high risk for a DGF following kidney transplantation from deceased or living donors.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Cell Cycle Arrest ; Cell Death ; Delayed Graft Function ; Ischaemia And Reperfusion Injury ; Kidney Transplantation ; Total Keratin 18; Cell-line Thp-1; In-vitro; Hacat Keratinocytes; Alkaloid Berberine; Dendritic Cells; Injury; Skin; Sensitization; Expression; Toxicity
ISSN (print) / ISBN 0934-0874
e-ISSN 1432-2277
Quellenangaben Volume: 31, Issue: 7, Pages: 751-760 Article Number: , Supplement: ,
Publisher Wiley
Publishing Place Oxford
Non-patent literature Publications
Reviewing status Peer reviewed