PuSH - Publication Server of Helmholtz Zentrum München

Reymond Sutandy, F.X.* ; Ebersberger, S.* ; Huang, L.* ; Busch, A.* ; Bach, M.* ; Kang, H.-S. ; Fallmann, J.* ; Maticzka, D.* ; Backofen, R.* ; Stadler, P.F.* ; Zarnack, K.* ; Sattler, M. ; Legewie, S.* ; König, J.*

In vitro iCLIP-based modeling uncovers how the splicing factor U2AF2 relies on regulation by cofactors.

Genome Res. 28, 699-713 (2018)
Publ. Version/Full Text Research data DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
Alternative splicing generates distinct mRNA isoforms and is crucial for proteome diversity in eukaryotes. The RNA-binding protein (RBP) U2AF2 is central to splicing decisions, as it recognizes 3′splice sites and recruits the spliceosome. We establish “in vitro iCLIP” experiments, in which recombinant RBPs are incubated with long transcripts, to study how U2AF2 recognizes RNA sequences and how this is modulated by trans-acting RBPs. We measure U2AF2 affinities at hundreds of binding sites and compare in vitro and in vivo binding landscapes by mathematical modeling. We find that trans-acting RBPs extensively regulate U2AF2 binding in vivo, including enhanced recruitment to 3′splice sites and clearance of introns. Using machine learning, we identify and experimentally validate novel trans-acting RBPs (including FUBP1, CELF6, and PCBP1) that modulate U2AF2 binding and affect splicing outcomes. Our study offers a blueprint for the high-throughput characterization of in vitro mRNP assembly and in vivo splicing regulation.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
10.101
2.350
39
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2018
HGF-reported in Year 2018
ISSN (print) / ISBN 1088-9051
e-ISSN 1549-5469
Journal Genome Research
Quellenangaben Volume: 28, Issue: 5, Pages: 699-713 Article Number: , Supplement: ,
Publisher Cold Spring Harbor Laboratory Press
Reviewing status Peer reviewed
POF-Topic(s) 30203 - Molecular Targets and Therapies
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503000-001
Scopus ID 85046671390
Erfassungsdatum 2018-07-17