Kriegel, F.* ; Matek, C. ; Dršata, T.* ; Kulenkampff, K.* ; Tschirpke, S.* ; Zacharias, M.* ; Lankaš, F.* ; Lipfert, J.*
The temperature dependence of the helical twist of DNA.
Nucleic Acids Res. 46, 7998-8009 (2018)
DNA is the carrier of all cellular genetic information and increasingly used in nanotechnology. Quantitative understanding and optimization of its functions requires precise experimental characterization and accurate modeling of DNA properties. A defining feature of DNA is its helicity. DNA unwinds with increasing temperature, even for temperatures well below the melting temperature. However, accurate quanti-tation of DNA unwinding under external forces and a microscopic understanding of the corresponding structural changes are currently lacking. Here we combine single-molecule magnetic tweezers measurements with atomistic molecular dynamics and coarse-grained simulations to obtain a comprehensive view of the temperature dependence of DNA twist. Experimentally, we find that DNA twist changes by Tw(T) = (−11.0 ± 1.2)◦/(◦C·kbp), independent of applied force, in the range of forces where torque-induced melting is negligible. Our atomistic simulations predict Tw(T) = (−11.1 ± 0.3)◦/(◦C·kbp), in quantitative agreement with experiments, and suggest that the untwisting of DNA with temperature is predominantly due to changes in DNA structure for defined backbone substates, while the effects of changes in substate populations are minor. Coarse-grained simulations using the oxDNA framework yield a value of Tw(T) = (−6.4 ± 0.2)◦/(◦C·kbp) in semi-quantitative agreement with experiments.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Molecular-dynamics Simulations; Double-stranded Dna; Magnetic Torque Tweezers; B-dna; Nucleic-acids; Supercoiled Dna; Base-pair; Mechanical-properties; Torsional Stiffness; Probing Allostery
Keywords plus
Language
Publication Year
2018
Prepublished in Year
HGF-reported in Year
2018
ISSN (print) / ISBN
0305-1048
e-ISSN
1362-4962
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 46,
Issue: 15,
Pages: 7998-8009
Article Number: ,
Supplement: ,
Series
Publisher
Oxford University Press
Publishing Place
Great Clarendon St, Oxford Ox2 6dp, England
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-503800-001
Grants
Copyright
Erfassungsdatum
2018-07-30