Schumacher, D.* ; Morgenstern, J.* ; Oguchi, Y.* ; Volk, N.* ; Kopf, S.* ; Groener, J.B.* ; Nawroth, P.P. ; Fleming, T.H.* ; Freichel, M.*
Compensatory mechanisms for methylglyoxal detoxification in experimental & clinical diabetes.
Mol. Metab. 18, 143-152 (2018)
Objectives: The deficit of Glyoxalase I (Glo1) and the subsequent increase in methylglyoxal (MG) has been reported to be one the five mechanisms by which hyperglycemia causes diabetic late complications. Aldo-keto reductases (AKR) have been shown to metabolize MG; however, the relative contribution of this superfamily to the detoxification of MG in vivo, particularly within the diabetic state, remains unknown.Methods: CRISPR/Cas9-mediated genome editing was used to generate a Glo1 knock-out (Glo1(-/-)) mouse line. Streptozotocin was then applied to investigate metabolic changes under hyperglycemic conditions.Results: Glo1(-/-) mice were viable and showed no elevated MG or MG-H1 levels under hyperglycemic conditions. It was subsequently found that the enzymatic efficiency of various oxidoreductases in the liver and kidney towards MG were increased in the Glo1(-/-) mice. The functional relevance of this was supported by the altered distribution of alternative detoxification products. Furthermore, it was shown that MG-dependent AKR activity is a potentially clinical relevant pathway in human patients suffering from diabetes.Conclusions: These data suggest that in the absence of GLO1, AKR can effectively compensate to prevent the accumulation of MG. The combination of metabolic, enzymatic, and genetic factors, therefore, may provide a better means of identifying patients who are at risk for the development of late complications caused by elevated levels of MG. (C) 2018 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Advanced Glycation End Products ; Glyoxalase 1 ; Reactive Metabolites ; Methylglyoxal ; Diabetic Complications ; Aldo-keto Reductases; Endothelial-cells; Aldose Reductase; Glyoxalase-i; Degradation-products; Dicarbonyl Stress; Hyperglycemia; Metabolism; Type-1; Increases; Glycation
Keywords plus
Language
english
Publication Year
2018
Prepublished in Year
HGF-reported in Year
2018
ISSN (print) / ISBN
2212-8778
e-ISSN
2212-8778
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 18,
Issue: ,
Pages: 143-152
Article Number: ,
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Amsterdam
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
90000 - German Center for Diabetes Research
Research field(s)
Helmholtz Diabetes Center
PSP Element(s)
G-501900-251
Grants
Copyright
Erfassungsdatum
2018-10-22