Composition of carbonaceous fine particulate emissions of a flexible fuel DISI engine under high velocity and municipal conditions.
    
    
        
    
    
        
        Fuel 236, 1465-1473 (2019)
    
    
    
      
      
	
	    A study about the chemical composition of carbonaceous fine particulate emissions of flexible fuel direct injection spark ignition engine under high velocity and municipal conditions was conducted with two different gasoline-ethanol blended fuels (E10 and E85). A self-designed engine test cycle simulating high vehicle velocity conditions of up to of 180 km/h was introduced (high velocity driving cycle, HVDC), simulating a possible motorway scenario without speed legislations as allowed in Germany, and compared to a municipal driving cycle (MDC), which is derived from the New European Driving Cycle (NEDC). The fingerprint of polycyclic aromatic hydrocarbons (PAHs) and their alkylated and oxygenated derivatives as well as the concentrations for PM2.5, elemental carbon (EC), organic carbon (OC) and also for the three most abundant PAHs were determined using a modified thermal optical carbon analyser (TOCA) hyphenated to soft resonance-enhanced multi-photon ionisation mass spectrometry (REMPI-TOFMS). Driving under high velocity conditions resulted in a significant increase of concentrations for PM, EC, OC, methyl-phenanthrenes and pyrene. Engine operation on E85 led to a strong decrease for all concentrations for both cycles. A good correlation was found between concentrations obtained by REMPI-TOFMS and TD-GC/MS. Most prominent PAHs were the alkylated series of phenanthrene, pyrene and naphthalene, whereby the abundances decrease with increasing degree of alkylation. The organic composition between HVDC and MDC mainly differed in quantity and to a lower extent in the aromatic pattern. Nevertheless, methyl-phenanthrenes, pyrene and methyl-pyrenes as well as 4H-cyclopenta[def] phenanthrene and benzo[b]naphtho[1,2-d]furan/benzo[b]naphtho[2,3-d] furan and it alkylated series showed a higher abundance in the pattern under high velocity conditions, where alkylated naphthalenes were enhanced in the MDC mode.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Photoionization ; Rempi ; Pah ; Gasoline-ethanol Blend ; Soot ; Thermal Optical Carbon Analysis; Polycyclic Aromatic-hydrocarbons; Flight Mass-spectrometry; Enhanced Multiphoton Ionization; Chemical-composition; Regulated Emissions; Pm Emissions; Gdi Vehicle; Iso-butanol; Air Toxics; Gasoline
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2019
    
 
    
        Prepublished in Year
        2018
    
 
    
        HGF-reported in Year
        2018
    
 
    
    
        ISSN (print) / ISBN
        0016-2361
    
 
    
        e-ISSN
        1873-7153
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 236,  
	    Issue: ,  
	    Pages: 1465-1473 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Elsevier
        
 
        
            Publishing Place
            The Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb, Oxon, England
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30202 - Environmental Health
    
 
    
        Research field(s)
        Environmental Sciences
    
 
    
        PSP Element(s)
        G-504500-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2018-10-26