Krahmer, N.* ; Najafi, B. ; Schueder, F.* ; Quagliarini, F. ; Steger, M.* ; Seitz, S. ; Kasper, R.* ; Salinas, F.* ; Cox, J.* ; Uhlenhaut, N.H. ; Walther, T.C.* ; Jungmann, R.* ; Zeigerer, A. ; Borner, G.H.H.* ; Mann, M.*
Organellar proteomics and phospho-proteomics reveal subcellular teorganization in diet-induced hepatic steatosis.
Dev. Cell 47, 205-221.e7 (2018)
Lipid metabolism is highly compartmentalized between cellular organelles that dynamically adapt their compositions and interactions in response to metabolic challenges. Here, we investigate how diet-induced hepatic lipid accumulation, observed in non-alcoholic fatty liver disease (NAFLD), affects protein localization, organelle organization, and protein phosphorylation in vivo. We develop a mass spectrometric workflow for protein and phosphopeptide correlation profiling to monitor levels and cellular distributions of similar to 6,000 liver proteins and similar to 16,000 phosphopeptides during development of steatosis. Several organelle contact site proteins are targeted to lipid droplets (LDs) in steatotic liver, tethering organelles orchestrating lipid metabolism. Proteins of the secretory pathway dramatically redistribute, including the mis-localization of the COPI complex and sequestration of the Golgi apparatus at LDs. This correlates with reduced hepatic protein secretion. Our systematic in vivo analysis of subcellular rearrangements and organelle-specific phosphorylation reveals how nutrient overload leads to organellar reorganization and cellular dysfunction.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Copi ; Golgi Apparatus ; Contact Sites ; Correlation Profiling ; Hepatic Steatosis ; High-fat Diet ; Lipid Droplet ; Organelle Phosphoproteome ; Organelle Proteome ; Secretion Defect; Lipid Droplets; Phosphoproteome Reveals; Protein Localization; Insulin-resistance; In-vivo; Liver; Fat; Phosphorylation; Quantification; Biogenesis
Keywords plus
Language
english
Publication Year
2018
Prepublished in Year
HGF-reported in Year
2018
ISSN (print) / ISBN
1534-5807
e-ISSN
1878-1551
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 47,
Issue: 2,
Pages: 205-221.e7
Article Number: ,
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
50 Hampshire St, Floor 5, Cambridge, Ma 02139 Usa
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
90000 - German Center for Diabetes Research
30201 - Metabolic Health
Research field(s)
Helmholtz Diabetes Center
PSP Element(s)
G-501900-254
G-502200-001
Grants
Copyright
Erfassungsdatum
2018-10-26