PuSH - Publication Server of Helmholtz Zentrum München

Bijkerk, R.* ; Aleksinskaya, M.A.* ; Duijs, J.M.* ; Veth, J.* ; Husen, B.* ; Reiche, D.* ; Prehn, C. ; Adamski, J. ; Rabelink, T.J.* ; De Mey, J.G.R.* ; van Zonneveld, A.J.*

Neutral endopeptidase inhibitors blunt kidney fibrosis by reducing myofibroblast formation.

Clin. Sci. 133, 239-252 (2019)
DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
Kidney fibrosis is the common pathophysiological mechanism in end-stage renal disease characterized by excessive accumulation of myofibroblast-derived extracellular matrix. Natriuretic peptides have been demonstrated to have cyclic guanosine monophosphate (cGMP)-dependent anti-fibrotic properties likely due to interference with pro-fibrotic tissue growth factor β (TGF-β) signaling. However, in vivo, natriuretic peptides are rapidly degraded by neutral endopeptidases (NEP). In a unilateral ureteral obstruction (UUO) mouse model for kidney fibrosis we assessed the anti-fibrotic effects of SOL1, an orally active compound that inhibits NEP and endothelin-converting enzyme (ECE). Mice (n=10 per group) subjected to UUO were treated for 1 week with either solvent, NEP-/ECE-inhibitor SOL1 (two doses), reference NEP-inhibitor candoxatril or the angiotensin II receptor type 1 (AT1)-antagonist losartan. While NEP-inhibitors had no significant effect on blood pressure, they did increase urinary cGMP levels as well as endothelin-1 (ET-1) levels. Immunohistochemical staining revealed a marked decrease in renal collagen (∼55% reduction, P<0.05) and α-smooth muscle actin (α-SMA; ∼40% reduction, P<0.05). Moreover, the number of α-SMA positive cells in the kidneys of SOL1-treated groups inversely correlated with cGMP levels consistent with a NEP-dependent anti-fibrotic effect. To dissect the molecular mechanisms associated with the anti-fibrotic effects of NEP inhibition, we performed a 'deep serial analysis of gene expression (Deep SAGE)' transcriptome and targeted metabolomics analysis of total kidneys of all treatment groups. Pathway analyses linked increased cGMP and ET-1 levels with decreased nuclear receptor signaling (peroxisome proliferator-activated receptor [PPAR] and liver X receptor/retinoid X receptor [LXR/RXR] signaling) and actin cytoskeleton organization. Taken together, although our transcriptome and metabolome data indicate metabolic dysregulation, our data support the therapeutic potential of NEP inhibition in the treatment of kidney fibrosis via cGMP elevation and reduced myofibroblast formation.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Cgmp ; Kidney Fibrosis ; Metabolomics ; Myofibroblast ; Neutral Endopeptidase Inhibition ; Transcriptomics
ISSN (print) / ISBN 0143-5221
e-ISSN 0143-5221
Quellenangaben Volume: 133, Issue: 2, Pages: 239-252 Article Number: , Supplement: ,
Publisher Portland Press
Non-patent literature Publications
Reviewing status Peer reviewed