Ihalainen, M.* ; Tiitta, P.* ; Czech, H.* ; Yli-Pirilä, P.* ; Hartikainen, A.* ; Kortelainen, M.* ; Tissari, J.* ; Stengel, B.* ; Sklorz, M. ; Suhonen, H.* ; Lamberg, H.* ; Leskinen, A.* ; Kiendler-Scharr, A.* ; Harndorf, H.* ; Zimmermann, R. ; Jokiniemi, J.* ; Sippula, O.*
A novel high-volume Photochemical Emission Aging flow tube Reactor (PEAR).
Aerosol Sci. Technol. 53, 276-294 (2019)
Aerosols emitted from various anthropogenic and natural sources undergo constant physicochemical transformations in the atmosphere, altering their impacts on health and climate. This article presents the design and characteristics of a novel Photochemical Emission Aging flow tube Reactor (PEAR). The PEAR was designed to provide sufficient aerosol mass and flow for simultaneous measurement of the physicochemical properties of aged aerosols and emission exposure studies (in vivo and in vitro). The performance of the PEAR was evaluated by using common precursors of secondary aerosols as well as combustion emissions from a wood stove and a gasoline engine. The PEAR was found to provide a near laminar flow profile, negligible particle losses for particle sizes above 40 nm, and a narrow residence time distribution. These characteristics enable resolution of temporal emission patterns from dynamic emission sources such as small-scale wood combustion. The formation of secondary organic aerosols (SOA) in the PEAR was found to be similar to SOA formation in a smog chamber when toluene and logwood combustion emissions were used as aerosol sources. The aerosol mass spectra obtained from the PEAR and smog-chamber were highly similar when wood combustion was used as the emission source. In conclusion, the PEAR was found to plausibly simulate the photochemical aging of organic aerosols with high flow rates, needed for studies to investigate the effects of aged aerosols on human health. The method also enables to study the aging of different emission phases in high time resolution, and with different OH-radical exposures up to conditions representing long-range transported aerosols. Copyright (c) 2019 American Association for Aerosol Research
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Matti Maricq; Secondary Organic Aerosol; Time-resolved Characterization; Residential Wood Combustion; Heterogeneous Oxidation; Mass-spectrometry; Smog Chamber; Chemical-composition; Particulate Matter; Trace Gases; Cold-start
Keywords plus
Language
english
Publication Year
2019
Prepublished in Year
HGF-reported in Year
2019
ISSN (print) / ISBN
0278-6826
e-ISSN
1521-7388
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 53,
Issue: 3,
Pages: 276-294
Article Number: ,
Supplement: ,
Series
Publisher
Taylor & Francis
Publishing Place
530 Walnut Street, Ste 850, Philadelphia, Pa 19106 Usa
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504500-001
Grants
Copyright
Erfassungsdatum
2019-03-08