PuSH - Publication Server of Helmholtz Zentrum München

Karlov, D.S.* ; Sosnin, S.* ; Tetko, I.V. ; Fedorov, M.V.*

Chemical space exploration guided by deep neural networks.

RSC Adv. 9, 5151-5157 (2019)
Publ. Version/Full Text Research data DOI
Open Access Gold
Creative Commons Lizenzvertrag
A parametric t-SNE approach based on deep feed-forward neural networks was applied to the chemical space visualization problem. It is able to retain more information than certain dimensionality reduction techniques used for this purpose (principal component analysis (PCA), multidimensional scaling (MDS)). The applicability of this method to some chemical space navigation tasks (activity cliffs and activity landscapes identification) is discussed. We created a simple web tool to illustrate our work (http://space.syntelly.com).
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Visualization; Prediction; Regression; Chemistry; Database; Universe; Qsar
ISSN (print) / ISBN 2046-2069
e-ISSN 2046-2069
Journal RSC Advances
Quellenangaben Volume: 9, Issue: 9, Pages: 5151-5157 Article Number: , Supplement: ,
Publisher Royal Society of Chemistry (RSC)
Publishing Place London
Non-patent literature Publications
Reviewing status Peer reviewed