PuSH - Publication Server of Helmholtz Zentrum München

Karlov, D.S.* ; Sosnin, S.* ; Tetko, I.V. ; Fedorov, M.V.*

Chemical space exploration guided by deep neural networks.

RSC Adv. 9, 5151-5157 (2019)
Publ. Version/Full Text Research data DOI
Open Access Gold
Creative Commons Lizenzvertrag
A parametric t-SNE approach based on deep feed-forward neural networks was applied to the chemical space visualization problem. It is able to retain more information than certain dimensionality reduction techniques used for this purpose (principal component analysis (PCA), multidimensional scaling (MDS)). The applicability of this method to some chemical space navigation tasks (activity cliffs and activity landscapes identification) is discussed. We created a simple web tool to illustrate our work (http://space.syntelly.com).
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.049
0.785
15
17
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Visualization; Prediction; Regression; Chemistry; Database; Universe; Qsar
Language english
Publication Year 2019
HGF-reported in Year 2019
ISSN (print) / ISBN 2046-2069
e-ISSN 2046-2069
Journal RSC Advances
Quellenangaben Volume: 9, Issue: 9, Pages: 5151-5157 Article Number: , Supplement: ,
Publisher Royal Society of Chemistry (RSC)
Publishing Place London
Reviewing status Peer reviewed
POF-Topic(s) 30203 - Molecular Targets and Therapies
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503000-001
Scopus ID 85061977421
Erfassungsdatum 2019-03-19