The pathologic effect of a novel neomorphic Fgf9Y162C allele is restricted to decreased vision and retarded lens growth.
PLoS ONE 6:e23678 (2011)
Fibroblast growth factor (Fgf) signalling plays a crucial role in many developmental processes. Among the Fgf pathway ligands, Fgf9 (UniProt: P54130) has been demonstrated to participate in maturation of various organs and tissues including skeleton, testes, lung, heart, and eye. Here we establish a novel Fgf9 allele, discovered in a dominant N-ethyl-N-nitrosourea (ENU) screen for eye-size abnormalities using the optical low coherence interferometry technique. The underlying mouse mutant line Aca12 was originally identified because of its significantly reduced lens thickness. Linkage studies located Aca12 to chromosome 14 within a 3.6 Mb spanning interval containing the positional candidate genes Fgf9 (MGI: 104723), Gja3 (MGI: 95714), and Ift88 (MGI: 98715). While no sequence differences were found in Gja3 and Ift88, we identified an A→G missense mutation at cDNA position 770 of the Fgf9 gene leading to an Y162C amino acid exchange. In contrast to previously described Fgf9 mutants, Fgf9(Y162C) carriers were fully viable and did not reveal reduced body-size, male-to-female sexual reversal or skeletal malformations. The histological analysis of the retina as well as its basic functional characterization by electroretinography (ERG) did not show any abnormality. However, the analysis of head-tracking response of the Fgf9(Y162C) mutants in a virtual drum indicated a gene-dosage dependent vision loss of almost 50%. The smaller lenses in Fgf9(Y162C) suggested a role of Fgf9 during lens development. Histological investigations showed that lens growth retardation starts during embryogenesis and continues after birth. Young Fgf9(Y162C) lenses remained transparent but developed age-related cataracts. Taken together, Fgf9(Y162C) is a novel neomorphic allele that initiates microphakia and reduced vision without effects on organs and tissues outside the eye. Our data point to a role of Fgf9 signalling in primary and secondary lens fiber cell growth. The results underline the importance of allelic series to fully understand multiple functions of a gene.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
RHIZOMELIC CHONDRODYSPLASIA PUNCTATA; TRANSGENIC MICE; PTS2 RECEPTOR; FIBER DIFFERENTIATION; EXTRACELLULAR-MATRIX; MISSENSE MUTATION; MUTANT MICE; HUMAN PEX7; GENE; PROTEIN
Keywords plus
Language
english
Publication Year
2011
Prepublished in Year
HGF-reported in Year
2011
ISSN (print) / ISBN
1932-6203
e-ISSN
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 6,
Issue: 8,
Pages: ,
Article Number: e23678
Supplement: ,
Series
Publisher
Public Library of Science (PLoS)
Publishing Place
Lawrence, Kan.
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30204 - Cell Programming and Repair
30201 - Metabolic Health
30203 - Molecular Targets and Therapies
Research field(s)
Genetics and Epidemiology
Enabling and Novel Technologies
PSP Element(s)
G-500500-002
G-500600-003
G-503000-001
G-505600-001
Grants
Copyright
Erfassungsdatum
2011-09-12