Open Access Green as soon as Postprint is submitted to ZB.
Calcium-dependent blood-brain barrier breakdown by NOX5 limits postreperfusion benefit in stroke.
J. Clin. Invest. 129, 1772-1778 (2019)
Publ. Version/Full Text
Preprint
Research data
DOI
PMC
lschemic stroke is a predominant cause of disability worldwide, with thrombolytic or mechanical removal of the occlusion being the only therapeutic option. Reperfusion bears the risk of an acute deleterious calcium-dependent breakdown of the blood-brain barrier. Its mechanism, however, is unknown. Here, we identified type 5 NADPH oxidase (NOX5), a calciumactivated, ROS-forming enzyme, as the missing link. Using a humanized knockin (KI) mouse model and in vitro organotypic cultures, we found that reoxygenation or calcium overload increased brain ROS levels in a NOX5-dependent manner. In vivo, postischemic ROS formation, infarct volume, and functional outcomes were worsened in NOXS-KI mice. Of clinical and therapeutic relevance, in a human blood-barrier model, pharmacological NOX inhibition also prevented acute reoxygenationinduced leakage. Our data support further evaluation of poststroke recanalization in the presence of NOX inhibition for limiting stroke-induced damage.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Calcium ; Hypoxia ; Neuroscience ; Pharmacology ; Therapeutics; Nadph Oxidase; Independent Predictor; Therapeutic Targets; Neuroprotection; Angiogenesis; Injury; Count
ISSN (print) / ISBN
0021-9738
e-ISSN
1558-8238
Quellenangaben
Volume: 129,
Issue: 4,
Pages: 1772-1778
Publisher
American Society of Clinical Investigation
Publishing Place
2015 Manchester Rd, Ann Arbor, Mi 48104 Usa
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Institute of Experimental Genetics (IEG)