Capsule optoacoustic endoscopy for esophageal imaging.
J. Biophotonics 12:e201800439 (2019)
Detection and monitoring of esophageal cancer severity require an imaging technique sensitive enough to detect early pathological changes in the esophagus and capable of analyzing the esophagus over 360 degrees in a non-invasive manner. Optoacoustic endoscopy (COE) has been shown to resolve superficial vascular structure of the esophageal lumen in rats and rabbits using catheter-type probes. Although these systems can work well in small animals, they are unsuitable for larger lumens with thicker walls as required for human esophageal screening, due to their lack of position stability along the full organ circumference, sub-optimal acoustic coupling and limited signal-to-noise ratio (SNR). In this work, we introduce a novel capsule COE system that provides high-quality 360 degrees images of the entire lumen, specifically designed for typical dimensions of human esophagus. The pill-shaped encapsulated probe consists of a novel and highly sensitive ultrasound transducer fitted with an integrated miniature pre-amplifier, which increases SNR of 10 dB by minimizing artifacts during signal transmission compared to the configuration without the preamplifier. The scanner rotates helically around the central axis of the probe to capture three-dimensional images with uniform quality. We demonstrate for the first time ex vivo volumetric vascular network images to a depth of 2 mm in swine esophageal lining using COE. Vascular information can be resolved within the mucosa and submucosa layers as confirmed by histology of samples stained with hematoxylin and eosin and with antibody against vascular marker CD31. COE creates new opportunities for optoacoustic screening of esophageal cancer in humans.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Optical Coherence Tomography; Ultrasound; Cancer; Endomicroscopy
Keywords plus
Language
english
Publication Year
2019
Prepublished in Year
HGF-reported in Year
2019
ISSN (print) / ISBN
1864-063X
e-ISSN
1864-0648
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 12,
Issue: 10,
Pages: ,
Article Number: e201800439
Supplement: ,
Series
Publisher
Wiley
Publishing Place
Postfach 101161, 69451 Weinheim, Germany
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
30201 - Metabolic Health
Research field(s)
Enabling and Novel Technologies
Helmholtz Diabetes Center
PSP Element(s)
G-505500-001
G-502590-001
Grants
Copyright
Erfassungsdatum
2019-05-13