Efficient monitoring of radiofrequency ablation procedures is essential to optimize the lesions induced to treat cancer, cardiac arrhythmias and other conditions. Recently, optoacoustic imaging and sensing methods have been suggested as a promising approach to address this challenge, offering unique advantages such as high sensitivity to temperature changes and chemical transformations in coagulated tissues, real-time operation and use of non- ionizing radiation. However, assessing how the ablation lesion boundary progresses is still challenged by changes in optical properties induced during the interventions. Herein, we suggest a new approach for dimensional characterization of the induced lesion based on detecting sharp positive variations in the time derivative of optoacoustic signals. Experiments in porcine tissue samples indicate that such variations are uniquely associated to the onset of ablation and that the method can robustly visualize the evolution of the lesion in three dimensions.