Rai, N.* ; Neugart, S.* ; Yan, Y.* ; Wang, F.* ; Siipola, S.M.* ; Lindfors, A.V.* ; Winkler, J.B. ; Albert, A. ; Brosché, M.* ; Lehto, T.* ; Morales, L.O.* ; Aphalo, P.J.*
How do cryptochromes and UVR8 interact in natural and simulated sunlight?
J. Exp. Bot. 70, 4975-4990 (2019)
Cryptochromes (CRYs) and UV RESISTANCE LOCUS 8 (UVR8) photoreceptors perceive UV-A/blue (315-500 nm) and UV-B (280-315 nm) radiation in plants, respectively. While the roles of CRYs and UVR8 have been studied in separate controlled-environment experiments, little is known about the interaction between these photoreceptors. Here, Arabidopsis wild-type Ler, CRYs and UVR8 photoreceptor mutants (uvr8-2, cry1cry2 and cry1cry2uvr8-2), and a flavonoid biosynthesis-defective mutant (tt4) were grown in a sun simulator. Plants were exposed to filtered radiation for 17 d or for 6 h, to study the effects of blue, UV-A, and UV-B radiation. Both CRYs and UVR8 independently enabled growth and survival of plants under solar levels of UV, while their joint absence was lethal under UV-B. CRYs mediated gene expression under blue light. UVR8 mediated gene expression under UV-B radiation, and in the absence of CRYs, also under UV-A. This negative regulation of UVR8-mediated gene expression by CRYs was also observed for UV-B. The accumulation of flavonoids was also consistent with this interaction between CRYs and UVR8. In conclusion, we provide evidence for an antagonistic interaction between CRYs and UVR8 and a role of UVR8 in UV-A perception.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Arabidopsis Thaliana ; Blue Light ; Cryptochromes ; Flavonoids ; Photoreceptor Interaction ; Solar Radiation ; Sun Simulator ; Transcript Abundance ; Ultraviolet Radiation ; Uvr8; Transcription Factor Hy5; Occurring Flavonoid Glycosides; B-induced Photomorphogenesis; Synthase Gene-expression; Blue-light; Signal-transduction; Stress Acclimation; Arabidopsis; Identification; Accumulation
Keywords plus
Language
Publication Year
2019
Prepublished in Year
HGF-reported in Year
2019
ISSN (print) / ISBN
0022-0957
e-ISSN
1460-2431
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 70,
Issue: 18,
Pages: 4975-4990
Article Number: ,
Supplement: ,
Series
Publisher
Oxford University Press
Publishing Place
Great Clarendon St, Oxford Ox2 6dp, England
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504991-001
Grants
Copyright
Erfassungsdatum
2019-05-21