PuSH - Publication Server of Helmholtz Zentrum München

Menden, M.P. ; Wang, D.* ; Mason, M.J.* ; Szalai, B.* ; Bulusu, K.C.* ; Guan, Y.* ; Yu, T.* ; Kang, J.* ; Jeon, M.* ; Wolfinger, R.* ; Nguyen, T.* ; Zaslavskiy, M.* ; Jang, I.S.* ; Ghazoui, Z.* ; Ahsen, M.E.* ; Vogel, R.* ; Neto, E.C.* ; Norman, T.* ; Tang, E.K.Y.* ; Garnett, M.J.* ; Veroli, G.Y.D.* ; Fawell, S.* ; Stolovitzky, G.* ; Guinney, J.* ; Dry, J.R.* ; Saez-Rodriguez, J.* ; AstraZeneca-Sanger Drug Combination DREAM Consortium (Kurz, C.F.)

Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen.

Nat. Commun. 10:2674 (2019)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
11.878
2.805
80
141
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Androgen Receptor; Breast-cancer; Gene; Cell; Inhibition; Resistance; Pathway; Mutations; Landscape; Resource
Language english
Publication Year 2019
HGF-reported in Year 2019
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Quellenangaben Volume: 10, Issue: 1, Pages: , Article Number: 2674 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-554700-001
Scopus ID 85067453487
PubMed ID 31209238
Erfassungsdatum 2019-06-26