PuSH - Publication Server of Helmholtz Zentrum München

Albrecht, W.* ; Kappenberg, F.* ; Brecklinghaus, T.* ; Stoeber, R.* ; Marchan, R.* ; Zhang, M.* ; Ebbert, K.* ; Kirschner, H.* ; Grinberg, M.* ; Leist, M.* ; Moritz, W.* ; Cadenas, C.* ; Ghallab, A.* ; Reinders, J.* ; Vartak, N.* ; van Thriel, C.* ; Golka, K.* ; Tolosa, L.* ; Castell, J.V.* ; Damm, G.* ; Seehofer, D.* ; Lampen, A.* ; Braeuning, A.* ; Buhrke, T.* ; Behr, A.C.* ; Oberemm, A.* ; Gu, X.* ; Kittana, N.* ; van de Water, B.* ; Kreiling, R.* ; Fayyaz, S.* ; van Aerts, L.* ; Smedsrød, B.* ; Ellinger-Ziegelbauer, H.* ; Steger-Hartmann, T.* ; Gundert-Remy, U.* ; Zeigerer, A. ; Ullrich, A.* ; Runge, D.* ; Lee, S.M.L.* ; Schiergens, T.S.* ; Kuepfer, L.* ; Aguayo-Orozco, A.* ; Sachinidis, A.* ; Edlund, K.* ; Gardner, I.* ; Rahnenführer, J.* ; Hengstler, J.G.*

Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations.

Arch. Toxicol. 93, 1609-1637 (2019)
Publ. Version/Full Text Research data DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Drug-induced liver injury (DILI) cannot be accurately predicted by animal models. In addition, currently available in vitro methods do not allow for the estimation of hepatotoxic doses or the determination of an acceptable daily intake (ADI). To overcome this limitation, an in vitro/in silico method was established that predicts the risk of human DILI in relation to oral doses and blood concentrations. This method can be used to estimate DILI risk if the maximal blood concentration (Cmax) of the test compound is known. Moreover, an ADI can be estimated even for compounds without information on blood concentrations. To systematically optimize the in vitro system, two novel test performance metrics were introduced, the toxicity separation index (TSI) which quantifies how well a test differentiates between hepatotoxic and non-hepatotoxic compounds, and the toxicity estimation index (TEI) which measures how well hepatotoxic blood concentrations in vivo can be estimated. In vitro test performance was optimized for a training set of 28 compounds, based on TSI and TEI, demonstrating that (1) concentrations where cytotoxicity first becomes evident in vitro (EC10) yielded better metrics than higher toxicity thresholds (EC50); (2) compound incubation for 48 h was better than 24 h, with no further improvement of TSI after 7 days incubation; (3) metrics were moderately improved by adding gene expression to the test battery; (4) evaluation of pharmacokinetic parameters demonstrated that total blood compound concentrations and the 95%-population-based percentile of Cmax were best suited to estimate human toxicity. With a support vector machine-based classifier, using EC10 and Cmax as variables, the cross-validated sensitivity, specificity and accuracy for hepatotoxicity prediction were 100, 88 and 93%, respectively. Concentrations in the culture medium allowed extrapolation to blood concentrations in vivo that are associated with a specific probability of hepatotoxicity and the corresponding oral doses were obtained by reverse modeling. Application of this in vitro/in silico method to the rat hepatotoxicant pulegone resulted in an ADI that was similar to values previously established based on animal experiments. In conclusion, the proposed method links oral doses and blood concentrations of test compounds to the probability of hepatotoxicity.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
5.741
1.538
58
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords 3d Culture ; Alternative Methods ; Cryopreserved ; Cultivated Hepatocytes ; Hepatotoxicity ; Performance Metrics
Language english
Publication Year 2019
HGF-reported in Year 2019
ISSN (print) / ISBN 0340-5761
e-ISSN 1432-0738
Quellenangaben Volume: 93, Issue: 6, Pages: 1609-1637 Article Number: , Supplement: ,
Publisher Springer
Reviewing status Peer reviewed
POF-Topic(s) 90000 - German Center for Diabetes Research
Research field(s) Helmholtz Diabetes Center
PSP Element(s) G-501900-254
PubMed ID 31250071
Erfassungsdatum 2019-07-01