Open Access Gold as soon as Publ. Version/Full Text is submitted to ZB.
TGF-beta activation impairs fibroblast ability to support adult lung epithelial progenitor cell organoid formation.
Am. J. Physiol. Lung Cell Mol. Physiol. 317, L14-L28 (2019)
Transforming growth factor-beta (TGF-beta)-induced fibroblast-to-myofibroblast differentiation contributes to remodeling in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis, but whether this impacts the ability of fibroblasts to support lung epithelial repair remains little explored. We pretreated human lung fibroblasts [primary (phFB) or MRC5 cells] with recombinant human TGF-beta to induce myofibroblast differentiation, then cocultured them with adult mouse lung epithelial cell adhesion molecule-positive cells (EpCAM(+)) to investigate their capacity to support epithelial organoid formation in vitro. While control phFB and MRC5 lung fibroblasts supported organoid formation of mouse EpCAM(+) cells, TGF-beta pretreatment of both phFB and MRC5 impaired organoid-supporting ability. We performed RNA sequencing of TGF beta-treated phFB. which revealed altered expression of key Wnt signaling pathway components and Wnt/beta-catenin target genes, and modulated expression of secreted factors involved in mesenchymal-epithelial signaling. TGF-beta profoundly skewed the transcriptional program induced by the Wnt/beta-catenin activator CHIR99021. Supplementing organoid culture media recombinant hepatocyte growth factor or fibroblast growth factor 7 promoted organoid formation when using TGF-beta pretreated fibroblasts. In conclusion, TGF-beta-induced myofibroblast differentiation results in Wnt/beta-catenin pathway skewing and impairs fibroblast ability to support epithelial repair likely through multiple mechanisms, including modulation of secreted growth factors.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
4.060
0.993
27
38
Annotations
Special Publikation
Hide on homepage
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Lung Regeneration/repair ; Lung Stem Cells ; Mesenchymal-epithelial Signaling ; Tgf-beta ; Wnt/beta-catenin Signaling; Hepatocyte Growth-factor; Factor Scatter Factor; Self-renewal; Stem-cells; Cross-talk; Repair; Regeneration; Expression; Pathway; Proliferation
Language
english
Publication Year
2019
HGF-reported in Year
2019
ISSN (print) / ISBN
1040-0605
e-ISSN
1522-1504
Quellenangaben
Volume: 317,
Issue: 1,
Pages: L14-L28
Publisher
American Physiological Society
Publishing Place
Bethesda, Md. [u.a.]
Reviewing status
Peer reviewed
Institute(s)
Institute of Lung Health and Immunity (LHI)
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Lung Research
PSP Element(s)
G-503100-001
G-501600-003
G-501600-012
G-501600-003
G-501600-012
WOS ID
WOS:000473125600002
PubMed ID
30969812
Erfassungsdatum
2019-07-25