Platzer, A.* ; Nussbaumer, T. ; Karonitsch, T.* ; Smolen, J.S.* ; Aletaha, D.*
     
    
        
Analysis of gene expression in rheumatoid arthritis and related conditions offers insights into sex-bias, gene biotypes and co-expression patterns.
    
    
        
    
    
        
        PLoS ONE 14:e0219698 (2019)
    
    
    
      
      
	
	    The era of next-generation sequencing has mounted the foundation of many gene expression studies. In rheumatoid arthritis research, this has led to the discovery of important candidate genes which offered novel insights into mechanisms and their possible roles in the cure of the disease. In the last years, data generation has outstripped data analysis and while many studies focused on specific aspects of the disease, a global picture of the disease is not yet accomplished. Here, we analyzed and compared a collection of gene expression information from healthy individuals and from patients suffering under different arthritis conditions from published studies containing the following clinical conditions: early and established rheumatoid arthritis, osteoarthritis and arthralgia. We show comprehensive overviews of this data collection and give new insights specifically on gene expression in the early stage, into sex-dependent gene expression, and we describe general differences in expression of different biotypes of genes. Many genes that are related to cytoskeleton changes (actin filament related genes) are differently expressed in early rheumatoid arthritis in comparison to healthy subjects; interestingly, eight of these genes reverse their expression ratio significantly between men and women compared early rheumatoid arthritis and healthy subjects. There are some slighter changes between men and woman between the conditions early and established rheumatoid arthritis. Another aspect are miRNAs and other gene biotypes which are not only promising candidates for diagnoses but also change their expression grossly in average at rheumatoid arthritis and arthralgia compared to the healthy condition. With a selection of intersecting genes, we were able to generate simple classification models to distinguish between healthy and rheumatoid arthritis as well as between early rheumatoid arthritis to other arthritides based on gene expression.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2019
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2019
    
 
    
    
        ISSN (print) / ISBN
        1932-6203
    
 
    
        e-ISSN
        
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 14,  
	    Issue: 7,  
	    Pages: ,  
	    Article Number: e0219698 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Public Library of Science (PLoS)
        
 
        
            Publishing Place
            Lawrence, Kan.
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
    
        Institute(s)
        Institute of Environmental Medicine (IEM)
Institute of Network Biology (INET)
    
 
    
        POF-Topic(s)
        30202 - Environmental Health
30203 - Molecular Targets and Therapies
    
 
    
        Research field(s)
        Allergy	
Environmental Sciences
    
 
    
        PSP Element(s)
        G-503400-001
G-506400-001
    
 
    
        Grants
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2019-08-06