PuSH - Publication Server of Helmholtz Zentrum München

Deelen, J.* ; Kettunen, J.* ; Fischer, K.* ; van der Spek, A.* ; Trompet, S.* ; Kastenmüller, G. ; Boyd, A.W.* ; Zierer, J. ; van den Akker, E.B.* ; Amin, N.* ; Demirkan, A.* ; Ghanbari, M.* ; van Heemst, D.* ; Ikram, M.A.* ; van Klinken, J.B.* ; Mooijaart, S.P.* ; Peters, A. ; Salomaa, V.* ; Sattar, N.* ; Spector, T.D.* ; Tiemeier, H.* ; Verhoeven, A.* ; Waldenberger, M. ; Würtz, P.* ; Davey Smith, G.* ; Metspalu, A.* ; Perola, M.* ; Menni, C.* ; Geleijnse, J.M.* ; Drenos, F.* ; Beekman, M.* ; Jukema, J.W.* ; van Duijn, C.M.* ; Slagboom, P.E.*

A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals.

Nat. Commun. 10:3346 (2019)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Predicting longer-term mortality risk requires collection of clinical data, which is often cumbersome. Therefore, we use a well-standardized metabolomics platform to identify metabolic predictors of long-term mortality in the circulation of 44,168 individuals (age at baseline 18-109), of whom 5512 died during follow-up. We apply a stepwise (forward-backward) procedure based on meta-analysis results and identify 14 circulating biomarkers independently associating with all-cause mortality. Overall, these associations are similar in men and women and across different age strata. We subsequently show that the prediction accuracy of 5- and 10-year mortality based on a model containing the identified biomarkers and sex (C-statistic = 0.837 and 0.830, respectively) is better than that of a model containing conventional risk factors for mortality (C-statistic = 0.772 and 0.790, respectively). The use of the identified metabolic profile as a predictor of mortality or surrogate endpoint in clinical studies needs further investigation.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
11.878
2.805
69
98
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Magnetic-resonance Metabolomics; Amino-acids; Association; Hyperglycemia; Epidemiology
Language english
Publication Year 2019
HGF-reported in Year 2019
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Quellenangaben Volume: 10, Issue: 1, Pages: , Article Number: 3346 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
Institute(s) Institute of Bioinformatics and Systems Biology (IBIS)
Institute of Epidemiology (EPI)
POF-Topic(s) 30505 - New Technologies for Biomedical Discoveries
30202 - Environmental Health
Research field(s) Enabling and Novel Technologies
Genetics and Epidemiology
PSP Element(s) G-503700-001
G-504000-010
G-504091-001
Scopus ID 85070837796
PubMed ID 31431621
Erfassungsdatum 2019-09-19