Open Access Green as soon as Postprint is submitted to ZB.
Conserved requirement for a plant host cell protein in powdery mildew pathogenesis.
Nat. Genet. 38, 716-720 (2006)
In the fungal phylum Ascomycota, the ability to cause disease in plants and animals has been gained and lost repeatedly during phylogenesis. In monocotyledonous barley, loss-of-function mlo alleles result in effective immunity against the Ascomycete Blumeria graminis f. sp. hordei, the causal agent of powdery mildew disease. However, mlo-based disease resistance has been considered a barley-specific phenomenon to date. Here, we demonstrate a conserved requirement for MLO proteins in powdery mildew pathogenesis in the dicotyledonous plant species Arabidopsis thaliana. Epistasis analysis showed that mlo resistance in A. thaliana does not involve the signaling molecules ethylene, jasmonic acid or salicylic acid, but requires a syntaxin, glycosyl hydrolase and ABC transporter. These findings imply that a common host cell entry mechanism of powdery mildew fungi evolved once and at least 200 million years ago, suggesting that within the Erysiphales (powdery mildews) the ability to cause disease has been a stable trait throughout phylogenesis. © 2006 Nature Publishing Group.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
ISSN (print) / ISBN
1061-4036
e-ISSN
1546-1718
Journal
Nature Genetics
Quellenangaben
Volume: 38,
Issue: 6,
Pages: 716-720
Publisher
Nature Publishing Group
Publishing Place
New York, NY
Reviewing status
Peer reviewed
Institute(s)
Research Unit Environmental Simulation (EUS)