Electroporation is a transfection method in which an electrical field is applied to cells to create temporary pores in a cell membrane and increase its permeability, thereby allowing different molecules to be introduced to the cell. In this paper, electroporation is used to introduce plasmids to ependymoglial cells, which line the ventricular zone of the adult zebrafish telencephalon. A fraction of these cells shows stem cell properties and generates new neurons in the zebrafish brain; therefore, studying their behavior is essential to determine their roles in neurogenesis and regeneration. The introduction of plasmids via electroporation enables long-term labeling and tracking of a single ependymoglial cell. Furthermore, plasmids such as Cre recombinase or Cas9 can be delivered to single ependymoglial cells, which enables gene recombination or gene editing and provides a unique opportunity to assess the cell's autonomous gene function in a controlled, natural environment. Finally, this detailed, step-by-step electroporation protocol is used to obtain successful introduction of plasmids into a large number of single ependymoglial cells.