PuSH - Publication Server of Helmholtz Zentrum München

Eriksson, O.* ; Velikyan, I.* ; Haack, T.* ; Bossart, M.* ; Evers, A.* ; Laitinen, I.* ; Larsen, P.J.* ; Plettenburg, O. ; Takano, A.* ; Halldin, C.* ; Antoni, G.* ; Johansson, L.* ; Pierrou, S.* ; Wagner, M.*

Assessment of glucagon receptor occupancy by Positron Emission Tomography in non-human primates.

Sci. Rep. 9:14960 (2019)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The glucagon receptor (GCGR) is an emerging target in anti-diabetic therapy. Reliable biomarkers for in vivo activity on the GCGR, in the setting of dual glucagon-like peptide 1/glucagon (GLP-1/GCG) receptor agonism, are currently unavailable. Here, we investigated [Ga-68]Ga-DO3A-S01-GCG as a biomarker for GCGR occupancy in liver, the tissue with highest GCGR expression, in non-human primates (NHP) by PET. [Ga-68]Ga-DO3A-S01-GCG was evaluated by dynamic PET in NHPs by a dose escalation study design, where up to 67 mu g/kg DO3A-S01-GCG peptide mass was co-injected. The test-retest reproducibility of [Ga-68]Ga-DO3A-S01-GCG binding in liver was evaluated. Furthermore, we investigated the effect of pre-treatment with acylated glucagon agonist 1-GCG on [Ga-68]GaDO3A-S01-GCG binding in liver. [Ga-68]Ga-DO3A-S01-GCG bound to liver in vivo in a dose-dependent manner. Negligible peptide mass effect was observed for DO3A-S01-GCG doses <0.2 mu g/kg. In vivo K-d for [Ga-68]Ga-DO3A-S01-GCG corresponded to 0.7 mu g/kg, which indicates high potency. The test-retest reproducibility for [Ga-68]Ga-DO3A-S01-GCG binding in liver was 5.7 +/- 7.9%. Pre-treatment with 1-GCG, an acylated glucagon agonist, resulted in a GCGR occupancy of 61.5 +/- 9.1% in liver. Predicted human radiation dosimetry would allow for repeated annual [Ga-68]Ga-DO3A-S01-GCG PET examinations. In summary, PET radioligand [Ga-68]Ga-DO3A-S01-GCG is a quantitative biomarker of in vivo GCGR occupancy.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.011
1.240
7
6
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Peptide-1 Receptor
Language
Publication Year 2019
HGF-reported in Year 2019
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Quellenangaben Volume: 9, Issue: 1, Pages: , Article Number: 14960 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
Institute(s) Institute of Medicinal Chemistry (IMC)
POF-Topic(s) 30203 - Molecular Targets and Therapies
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-506300-001
Scopus ID 85073590810
PubMed ID 31628379
Erfassungsdatum 2019-10-22