PuSH - Publication Server of Helmholtz Zentrum München

Todorov, M.I.* ; Paetzold, J.C.* ; Schoppe, O.* ; Tetteh, G.* ; Efremov, V.* ; Völgyi, K.* ; Düring, M.* ; Dichgans, M.* ; Piraud, M.* ; Menze, B.* ; Ertürk, A.

Automated analysis of whole brainvasculature using machine learning.

bioRxiv, accepted (2019)
Tissue clearing methods enable imaging of intactbiological specimens without sectioning. Howev-er, reliable and scalable analysis of such largeimaging data in 3D remains a challenge. Towardsthis goal, we developed a deep learning-basedframework to quantify and analyze the brain vas-culature, named Vessel Segmentation & AnalysisPipeline ( VesSAP). Our pipeline uses a fully con-volutional network with a transfer learning a p-proach for segmentation. We systematically ana-lyzed vascular features of the whole brains i n-cluding their length, bifurcation points and radiusat the micrometer scale by registering them to the Allen mouse brain atlas. We reported the firstevidence of secondary intracranial collateral vas-cularization in CD1-Elite mice and found reducedvascularization in the brainstem as compared to the cerebrum. VesSAP thus enables unbiasedand scalable quantifications for the angioarchi-tecture of the cleared intact mouse brain andyields new biological insights related to the vas-cular brain function.
Impact Factor
Scopus SNIP
0.000
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2019
HGF-reported in Year 2019
Journal bioRxiv
Publisher Cold Spring Harbor Laboratory Press
Publishing Place Cold Spring Harbor
Reviewing status Peer reviewed
Institute(s) Institute for Tissue Engineering and Regenerative Medicine (ITERM)
Erfassungsdatum 2019-10-23