PuSH - Publication Server of Helmholtz Zentrum München

Yang, L. ; Gradl, R.* ; Dierolf, M.* ; Möller, W. ; Kutschke, D. ; Feuchtinger, A. ; Hehn, L.* ; Donnelley, M.* ; Günther, B.* ; Achterhold, K.* ; Walch, A.K. ; Stöger, T. ; Razansky, D. ; Pfeiffer, F.* ; Morgan, K.S.* ; Schmid, O.

Multimodal precision imaging of pulmonary nanoparticle delivery in mice: Dynamics of application, spatial distribution, and dosimetry.

Small 15:1904112 (2019)
Postprint DOI PMC
Open Access Green
Targeted delivery of nanomedicine/nanoparticles (NM/NPs) to the site of disease (e.g., the tumor or lung injury) is of vital importance for improved therapeutic efficacy. Multimodal imaging platforms provide powerful tools for monitoring delivery and tissue distribution of drugs and NM/NPs. This study introduces a preclinical imaging platform combining X-ray (two modes) and fluorescence imaging (three modes) techniques for time-resolved in vivo and spatially resolved ex vivo visualization of mouse lungs during pulmonary NP delivery. Liquid mixtures of iodine (contrast agent for X-ray) and/or (nano)particles (X-ray absorbing and/or fluorescent) are delivered to different regions of the lung via intratracheal instillation, nasal aspiration, and ventilator-assisted aerosol inhalation. It is demonstrated that in vivo propagation-based phase-contrast X-ray imaging elucidates the dynamic process of pulmonary NP delivery, while ex vivo fluorescence imaging (e.g., tissue-cleared light sheet fluorescence microscopy) reveals the quantitative 3D drug/particle distribution throughout the entire lung with cellular resolution. The novel and complementary information from this imaging platform unveils the dynamics and mechanisms of pulmonary NM/NP delivery and deposition for each of the delivery routes, which provides guidance on optimizing pulmonary delivery techniques and novel-designed NM for targeting and efficacy.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Aerosol Inhalation Therapy ; Lung Fluorescence Imaging ; Optical Tissue Clearing ; Pulmonary Delivery ; X-ray Imaging; Targeted Delivery; Drug; Particle; Biodistribution; Translocation; Inhalation; Deposition; Advantages; Pollutant
ISSN (print) / ISBN 1613-6810
e-ISSN 1613-6829
Journal Small
Quellenangaben Volume: 15, Issue: 59, Pages: , Article Number: 1904112 Supplement: ,
Publisher Wiley
Publishing Place Postfach 101161, 69451 Weinheim, Germany
Non-patent literature Publications
Reviewing status Peer reviewed