Expression and phase separation potential of heterochromatin proteins during early mouse development.
EMBO Rep. 20:e47952 (2019)
In most eukaryotes, constitutive heterochromatin is associated with H3K9me3 and HP1 alpha. The latter has been shown to play a role in heterochromatin formation through liquid-liquid phase separation. However, many other proteins are known to regulate and/or interact with constitutive heterochromatic regions in several species. We postulate that some of these heterochromatic proteins may play a role in the regulation of heterochromatin formation by liquid-liquid phase separation. Indeed, an analysis of the constitutive heterochromatin proteome shows that proteins associated with constitutive heterochromatin are significantly more disordered than a random set or a full nucleome set of proteins. Interestingly, their expression begins low and increases during preimplantation development. These observations suggest that the preimplantation embryo is a useful model to address the potential role for phase separation in heterochromatin formation, anticipating exciting research in the years to come.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Development ; Epigenetics ; Heterochromatin Establishment ; Phase Separation; Histone H3; Complex Coacervation; Chromatin-structure; Rna-binding; Lysine 9; Liquid; Sequence; Domains; Methylation; Hp1-alpha
Keywords plus
Language
english
Publication Year
2019
Prepublished in Year
HGF-reported in Year
2019
ISSN (print) / ISBN
1469-221X
e-ISSN
1469-3178
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 20,
Issue: 12,
Pages: ,
Article Number: e47952
Supplement: ,
Series
Publisher
EMBO Press
Publishing Place
111 River St, Hoboken 07030-5774, Nj Usa
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30204 - Cell Programming and Repair
Research field(s)
Stem Cell and Neuroscience
PSP Element(s)
G-506200-001
Grants
Copyright
Erfassungsdatum
2019-11-14