PuSH - Publication Server of Helmholtz Zentrum München

Liu, N. ; Shi, Y.* ; Guo, J.* ; Li, H.* ; Wang, Q.* ; Song, M.* ; Shi, Z.* ; He, L.* ; Su, X.* ; Xie, J.* ; Sun, X.*

Radioiodinated tyrosine based carbon dots with efficient renal clearance for single photon emission computed tomography of tumor.

Nano Res. 12, 3037-3043 (2019)
Publ. Version/Full Text DOI
Open Access Gold
Nanoparticles with effective tumor accumulation and efficient renal clearance have attracted significant interests for clinical applications. We prepared 2.5 nm tyrosine based carbon dots (TCDs) with phenolic hydroxyl groups on the surface for directly I-125 labeling. The I-125 labeled polyethylene glycol (PEG) functionalized TCDs (I-125-TCDPEGs) showed excellent radiochemical stability both in vitro and in vivo. Due to the enhanced permeability and retention effect, these I-125-TCDPEGs demonstrated a tumor accumulation around 4%-5% of the injected dose per gram (ID/g) for U87MG, 4T1, HepG2 and MCF7 tumor-bearing mice at 1 h post-injection. Meanwhile, the I-125-TCDPEGs also could be fast renally excreted, with less than 0.6% ID/g left in the liver and spleen within 24 h. These radioactive carbon dots not only can be used for cellular fluorescence imaging due to their intrinsic optical property, but are also effective single photon emission computed tomography (SPECT) imaging agents for tumor. Together with their excellent biocompatibility and stability, we anticipate these I-125-TCDPEGs of great potential for early tumor diagnosis in clinic. What's more, our TCDPEGs are also proved to be feasible carriers for other iodine isotopes such as 127I and 131I for different biomedical application.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
8.515
1.383
6
7
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Radioiodination ; Tyrosine Based Carbon Dots ; Single Photon Emission Computed Tomography (spect) Imaging ; Fluoresecent Imaging ; Renal Clearance; Nanodots; Radiotherapy; Therapy
Language
Publication Year 2019
HGF-reported in Year 2019
ISSN (print) / ISBN 1998-0124
e-ISSN 1998-0000
Journal Nano research
Quellenangaben Volume: 12, Issue: 12, Pages: 3037-3043 Article Number: , Supplement: ,
Publisher Tsinghua Univ. Press
Publishing Place Beijing
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-505500-001
Scopus ID 85074680574
Erfassungsdatum 2019-11-25