PuSH - Publication Server of Helmholtz Zentrum München

Spectral domain - Optical coherence tomography (SD-OCT) as a monitoring tool for alterations in mouse lenses.

Exp. Eye Res. 190:107871 (2020)
Postprint DOI PMC
Open Access Green
The eye lens displays a variety of phenotypes in the wake of genetic modifications or environmental influences. Therefore, a high-resolution in vivo imaging method for the lens is desirable. Optical coherence tomography (OCT) has become a powerful imaging tool in ophthalmology, especially for retinal imaging in small animal models such as mice. Here, we demonstrate an optimized approach specifically for anterior eye segment imaging with spectral domain OCT (SD-OCT) on several known murine lens cataract mutants. Scheimpflug and histological section images on the same eye were used in parallel to assess the observed pathologies. With SD-OCT images, we obtained detailed information about the different alterations from the anterior to the posterior pole of the lens. This capability makes OCT a valuable high-resolution imaging modality for the anterior eye segment in mouse.
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Mouse ; Eye Lens ; Cataracts ; Oct ; Scheimpflug Imaging; Anterior Segment; Scheimpflug System; In-vivo; Eye; Mutation; Leads
ISSN (print) / ISBN 0014-4835
e-ISSN 1096-0007
Quellenangaben Volume: 190, Issue: , Pages: , Article Number: 107871 Supplement: ,
Publisher Elsevier
Publishing Place 24-28 Oval Rd, London Nw1 7dx, England
Non-patent literature Publications
Reviewing status Peer reviewed