Müller, H.* ; Marozava, S. ; Probst, A.J.* ; Meckenstock, R.U.*
Groundwater cable bacteria conserve energy by sulfur disproportionation.
ISME J. 14, 623-634 (2020)
Cable bacteria of the family Desulfobulbaceae couple spatially separated sulfur oxidation and oxygen or nitrate reduction by long-distance electron transfer, which can constitute the dominant sulfur oxidation process in shallow sediments. However, it remains unknown how cells in the anoxic part of the centimeter-long filaments conserve energy. We found 16S rRNA gene sequences similar to groundwater cable bacteria in a 1-methylnaphthalene-degrading culture (1MN). Cultivation with elemental sulfur and thiosulfate with ferrihydrite or nitrate as electron acceptors resulted in a first cable bacteria enrichment culture dominated >90% by 16S rRNA sequences belonging to the Desulfobulbaceae. Desulfobulbaceae-specific fluorescence in situ hybridization (FISH) unveiled single cells and filaments of up to several hundred micrometers length to belong to the same species. The Desulfobulbaceae filaments also showed the distinctive cable bacteria morphology with their continuous ridge pattern as revealed by atomic force microscopy. The cable bacteria grew with nitrate as electron acceptor and elemental sulfur and thiosulfate as electron donor, but also by sulfur disproportionation when Fe(Cl)(2) or Fe(OH)(3) were present as sulfide scavengers. Metabolic reconstruction based on the first nearly complete genome of groundwater cable bacteria revealed the potential for sulfur disproportionation and a chemo-litho-autotrophic metabolism. The presence of different types of hydrogenases in the genome suggests that they can utilize hydrogen as alternative electron donor. Our results imply that cable bacteria not only use sulfide oxidation coupled to oxygen or nitrate reduction by LDET for energy conservation, but sulfur disproportionation might constitute the energy metabolism for cells in large parts of the cable bacterial filaments.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Targeted Oligonucleotide Probes; In-situ Hybridization; Sequence Similarity; Sulfide Oxidation; Iron; Reduction; Transport; Alignment; Resource; Nitrate
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
2019
HGF-reported in Year
2019
ISSN (print) / ISBN
1751-7362
e-ISSN
1751-7370
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 14,
Issue: 2,
Pages: 623-634
Article Number: ,
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
Macmillan Building, 4 Crinan St, London N1 9xw, England
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
20403 - Sustainable Water Management
Research field(s)
Environmental Sciences
PSP Element(s)
G-504390-001
Grants
Copyright
Erfassungsdatum
2019-11-29