PuSH - Publication Server of Helmholtz Zentrum München

Schubert, M. ; Colomé-Tatché, M. ; Foijer, F.*

Gene networks in cancer are biased by aneuploidies and sample impurities.

Biochim. Biophys. Acta-Gene Regul. Mech. 1863:194444 (2020)
Postprint DOI PMC
Gene regulatory network inference is a standard technique for obtaining structured regulatory information from, for instance, gene expression measurements. Methods performing this task have been extensively evaluated on synthetic, and to a lesser extent real data sets. In contrast to these test evaluations, applications to gene expression data of human cancers are often limited by fewer samples and more potential regulatory links, and are biased by copy number aberrations as well as cell mixtures and sample impurities. Here, we take networks inferred from TCGA cohorts as an example to show that (1) transcription factor annotations are essential to obtain reliable networks, and (2) even for state of the art methods, we expect that between 20 and 80% of edges are caused by copy number changes and cell mixtures rather than transcription factor regulation.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Review
Corresponding Author
Keywords Gene Regulatory Networks ; Cancer ; Method Comparison ; Aneuploidy; Inference; Widespread
ISSN (print) / ISBN 1874-9399
e-ISSN 1876-4320
Quellenangaben Volume: 1863, Issue: 6, Pages: , Article Number: 194444 Supplement: ,
Publisher Elsevier
Publishing Place Radarweg 29, 1043 Nx Amsterdam, Netherlands
Non-patent literature Publications
Reviewing status Peer reviewed