PuSH - Publication Server of Helmholtz Zentrum München

Ertürk, A. ; Mentz, S.* ; Stout, E.E.* ; Hedehus, M.* ; Dominguez, S.L.* ; Neumaier, L.* ; Krammer, F.* ; Llovera, G.* ; Srinivasan, K.* ; Hansen, D.V.* ; Liesz, A.* ; Scearce-Levie, K.A.* ; Sheng, M.*

Interfering with the chronic immune response rescues chronic degeneration after traumatic brain injury.

J. Neurosci. 36, 9962-9975 (2016)
Publ. Version/Full Text DOI PMC
Closed
Open Access Green as soon as Postprint is submitted to ZB.
UNLABELLED: After traumatic brain injury (TBI), neurons surviving the initial insult can undergo chronic (secondary) degeneration via poorly understood mechanisms, resulting in long-term cognitive impairment. Although a neuroinflammatory response is promptly activated after TBI, it is unknown whether it has a significant role in chronic phases of TBI (>1 year after injury). Using a closed-head injury model of TBI in mice, we showed by MRI scans that TBI caused substantial degeneration at the lesion site within a few weeks and these did not expand significantly thereafter. However, chronic alterations in neurons were observed, with reduced dendritic spine density lasting >1 year after injury. In parallel, we found a long-lasting inflammatory response throughout the entire brain. Deletion of one allele of CX3CR1, a chemokine receptor, limited infiltration of peripheral immune cells and largely prevented the chronic degeneration of the injured brain and provided a better functional recovery in female, but not male, mice. Therefore, targeting persistent neuroinflammation presents a new therapeutic option to reduce chronic neurodegeneration. SIGNIFICANCE STATEMENT: Traumatic brain injury (TBI) often causes chronic neurological problems including epilepsy, neuropsychiatric disorders, and dementia through unknown mechanisms. Our study demonstrates that inflammatory cells invading the brain lead to secondary brain damage. Sex-specific amelioration of chronic neuroinflammation rescues the brain degeneration and results in improved motor functions. Therefore, this study pinpoints an effective therapeutic approach to preventing secondary complications after TBI.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
5.924
1.631
53
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords 3d Imaging ; Axon ; Degeneration ; Inflammation ; Spine ; Trauma
Language english
Publication Year 2016
HGF-reported in Year 2016
ISSN (print) / ISBN 0270-6474
e-ISSN 1529-2401
Quellenangaben Volume: 36, Issue: 38, Pages: 9962-9975 Article Number: , Supplement: ,
Publisher Society for Neuroscience
Reviewing status Peer reviewed
Institute(s) Institute for Tissue Engineering and Regenerative Medicine (ITERM)
PubMed ID 27656033
Erfassungsdatum 2019-12-09