Intravital optoacoustic and ultrasound bio-microscopy reveal radiation-inhibited skull angiogenesis.
Bone 133:115251 (2020)
Angiogenesis is critical in bone development and growth. Dense, large-scale, and multi-layered vascular networks formed by thin-walled sinusoidal vessels perfuse the plate bones and play an important role in bone repair. Yet, the intricate functional morphology of skull microvasculature remains poorly understood as it is difficult to visualize using existing intravital microscopy techniques. Here we introduced an intravital, fully-transcranial imaging approach based on hybrid optoacoustic and ultrasound bio-microscopy for large-scale observations and quantitative analysis of the vascular morphology, angiogenesis, vessel remodeling, and subsurface roughness in murine skulls. Our approach revealed radiation-inhibited angiogenesis in the skull bone. We also observed previously undocumented sinusoidal vascular networks spanning the entire skullcap, thus opening new vistas for studying the complex interactions between calvarial, pial, and cortical vascular systems.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Skull Vasculature ; Radiation ; Optoacoustic Microscopy ; Ultrasound Microscopy ; Bone Angiogenesis ; Image Segmentation ; Quantitative Vasculature Analysis; Bone-marrow; Ionizing-radiation; Cells; Mechanisms; Brain; Veins
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
8756-3282
e-ISSN
1873-2763
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 133,
Issue: ,
Pages: ,
Article Number: 115251
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Ste 800, 230 Park Ave, New York, Ny 10169 Usa
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
30202 - Environmental Health
Research field(s)
Enabling and Novel Technologies
Radiation Sciences
PSP Element(s)
G-505590-001
G-500200-001
Grants
Copyright
Erfassungsdatum
2020-03-18