Ehrmann, S.* ; Schmid, O. ; Darquenne, C.* ; Rothen-Rutishauser, B.* ; Sznitman, J.* ; Yang, L. ; Barosova, H.* ; Vecellio, L.* ; Mitchell, J.* ; Henze-Vourc´h, N.*
Innovative preclinical models for pulmonary drug delivery research.
Expert Opin. Drug Deliv. 17, 463-478 (2020)
Introduction: Pulmonary drug delivery is a complex field of research combining physics which drive aerosol transport and deposition and biology which underpins efficacy and toxicity of inhaled drugs. A myriad of preclinical methods, ranging from in-silico to in-vitro, ex-vivo and in-vivo, can be implemented.Areas covered: The present review covers in-silico mathematical and computational fluid dynamics modelization of aerosol deposition, cascade impactor technology to estimated drug delivery and deposition, advanced in-vitro cell culture methods and associated aerosol exposure, lung-on-chip technology, ex-vivo modeling, in-vivo inhaled drug delivery, lung imaging, and longitudinal pharmacokinetic analysis.Expert opinion: No single preclinical model can be advocated; all methods are fundamentally complementary and should be implemented based on benefits and drawbacks to answer specific scientific questions. The overall best scientific strategy depends, among others, on the product under investigations, inhalation device design, disease of interest, clinical patient population, previous knowledge. Preclinical testing is not to be separated from clinical evaluation, as small proof-of-concept clinical studies or conversely large-scale clinical big data may inform preclinical testing. The extend of expertise required for such translational research is unlikely to be found in one single laboratory calling for the setup of multinational large-scale research consortiums.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Review
Thesis type
Editors
Keywords
Aerosolization ; Animal Models ; Cell Culture Techniques ; Inhalation ; Nebulization ; Theoretical Modeling; Alveolar Epithelial-cells; Aerosol Inhalation Inoculation; In-vitro; Respiratory-tract; Traditional Intranasal; Particle Deposition; Monoclonal-antibody; Culture Models; Lung; Vivo
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
1742-5247
e-ISSN
1744-7593
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 17,
Issue: 4,
Pages: 463-478
Article Number: ,
Supplement: ,
Series
Publisher
Informa Healthcare
Publishing Place
2-4 Park Square, Milton Park, Abingdon Or14 4rn, Oxon, England
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Lung Research
PSP Element(s)
G-505000-008
Grants
Copyright
Erfassungsdatum
2020-04-07