PuSH - Publication Server of Helmholtz Zentrum München

Nogueiras, R.* ; Wiedmer, P.* ; Perez-Tilve, D.* ; Veyrat-Durebex, C.* ; Keogh, J.M.* ; Sutton, G.M.* ; Pfluger, P.T. ; Castañeda, T.R.* ; Neschen, S.* ; Hofmann, S.M. ; Howles, P.N.* ; Morgan, D.A.* ; Benoit, S.C.* ; Szanto, I.* ; Schrott, B.* ; Schürmann, A.* ; Joost, H.G.* ; Hammond, C.* ; Hui, D.Y.* ; Woods, S.C.* ; Rahmouni, K.* ; Butler, A.A.* ; Farooqi, I.S.* ; O'Rahilly, S.* ; Rohner-Jeanrenaud, F.* ; Tschöp, M.H.

The central melanocortin system directly controls peripheral lipid metabolism.

J. Clin. Invest. 117, 3475-3488 (2007)
Publ. Version/Full Text DOI PMC
Open Access Gold
Disruptions of the melanocortin signaling system have been linked to obesity. We investigated a possible role of the central nervous melanocortin system (CNS-Mcr) in the control of adiposity through effects on nutrient partitioning and cellular lipid metabolism independent of nutrient intake. We report that pharmacological inhibition of melanocortin receptors (Mcr) in rats and genetic disruption of Mc4r in mice directly and potently promoted lipid uptake, triglyceride synthesis, and fat accumulation in white adipose tissue (WAT), while increased CNS-Mcr signaling triggered lipid mobilization. These effects were independent of food intake and preceded changes in adiposity. In addition, decreased CNS-Mcr signaling promoted increased insulin sensitivity and glucose uptake in WAT while decreasing glucose utilization in muscle and brown adipose tissue. Such CNS control of peripheral nutrient partitioning depended on sympathetic nervous system function and was enhanced by synergistic effects on liver triglyceride synthesis. Our findings offer an explanation for enhanced adiposity resulting from decreased melanocortin signaling, even in the absence of hyperphagia, and are consistent with feeding-independent changes in substrate utilization as reflected by respiratory quotient, which is increased with chronic Mcr blockade in rodents and in humans with loss-of-function mutations in MC4R. We also reveal molecular underpinnings for direct control of the CNS-Mcr over lipid metabolism. These results suggest ways to design more efficient pharmacological methods for controlling adiposity.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
0.000
0.000
322
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2007
HGF-reported in Year 2007
ISSN (print) / ISBN 0021-9738
e-ISSN 1558-8238
Quellenangaben Volume: 117, Issue: 11, Pages: 3475-3488 Article Number: , Supplement: ,
Publisher American Society of Clinical Investigation
Reviewing status Peer reviewed
PubMed ID 17885689
Erfassungsdatum 2020-02-24