PuSH - Publication Server of Helmholtz Zentrum München

Pfluger, P.T. ; Herranz, D.* ; Velasco-Miguel, S.* ; Serrano, M.* ; Tschöp, M.H.

Sirt1 protects against high-fat diet-induced metabolic damage.

Proc. Natl. Acad. Sci. U.S.A. 105, 9793-9798 (2008)
Publ. Version/Full Text DOI PMC
Open Access Gold
The identification of new pharmacological approaches to effectively prevent, treat, and cure the metabolic syndrome is of crucial importance. Excessive exposure to dietary lipids causes inflammatory responses, deranges the homeostasis of cellular metabolism, and is believed to constitute a key initiator of the metabolic syndrome. Mammalian Sirt1 is a protein deacetylase that has been involved in resveratrol-mediated protection from high-fat diet-induced metabolic damage, but direct proof for the implication of Sirt1 has remained elusive. Here, we report that mice with moderate overexpression of Sirt1 under the control of its natural promoter exhibit fat mass gain similar to wild-type controls when exposed to a high-fat diet. Higher energy expenditure appears to be compensated by a parallel increase in food intake. Interestingly, transgenic Sirt1 mice under a high-fat diet show lower lipid-induced inflammation along with better glucose tolerance, and are almost entirely protected from hepatic steatosis. We present data indicating that such beneficial effects of Sirt1 are due to at least two mechanisms: induction of antioxidant proteins MnSOD and Nrf1, possibly via stimulation of PGC1alpha, and lower activation of proinflammatory cytokines, such as TNFalpha and IL-6, via down-modulation of NFkappaB activity. Together, these results provide direct proof of the protective potential of Sirt1 against the metabolic consequences of chronic exposure to a high-fat diet.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
0.000
3.550
780
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2008
HGF-reported in Year 2008
ISSN (print) / ISBN 0027-8424
e-ISSN 1091-6490
Quellenangaben Volume: 105, Issue: 28, Pages: 9793-9798 Article Number: , Supplement: ,
Publisher National Academy of Sciences
Reviewing status Peer reviewed
PubMed ID 18599449
Erfassungsdatum 2020-02-24