PuSH - Publication Server of Helmholtz Zentrum München

Lopez Garcia, A.* ; Tran, V.* ; Alic, A.S.* ; Caballer, M.* ; Plasencia, I.C.* ; Costantini, A.* ; Dlugolinsky, S.* ; Duma, D.C.* ; Donvito, G.* ; Gomes, J.* ; Heredia Cacha, I.* ; De Lucas, J.M.* ; Ito, K. ; Kozlov, V.Y.* ; Nguyen, G.* ; Orviz Fernandez, P.* ; Sustr, Z.* ; Wolniewicz, P.* ; Antonacci, M.* ; zu Castell, W. ; David, M.* ; Hardt, M.* ; Lloret Iglesias, L.* ; Molto, G.* ; Plociennik, M.*

A cloud-based framework for machine learning workloads and applications.

IEEE Access 8, 18681-18692 (2020)
Publ. Version/Full Text DOI
Open Access Gold
Creative Commons Lizenzvertrag
In this paper we propose a distributed architecture to provide machine learning practitioners with a set of tools and cloud services that cover the whole machine learning development cycle: ranging from the models creation, training, validation and testing to the models serving as a service, sharing and publication. In such respect, the DEEP-Hybrid-DataCloud framework allows transparent access to existing e-Infrastructures, effectively exploiting distributed resources for the most compute-intensive tasks coming from the machine learning development cycle. Moreover, it provides scientists with a set of Cloud-oriented services to make their models publicly available, by adopting a serverless architecture and a DevOps approach, allowing an easy share, publish and deploy of the developed models.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.745
1.734
13
31
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Cloud Computing ; Computers And Information Processing ; Deep Learning ; Distributed Computing ; Machine Learning ; Serverless Architectures
Language english
Publication Year 2020
HGF-reported in Year 2020
ISSN (print) / ISBN 2169-3536
e-ISSN 2169-3536
Journal IEEE Access
Quellenangaben Volume: 8, Issue: , Pages: 18681-18692 Article Number: , Supplement: ,
Publisher IEEE
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
30505 - New Technologies for Biomedical Discoveries
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503891-001
G-503890-001
Scopus ID 85079817562
Erfassungsdatum 2020-05-11