PuSH - Publication Server of Helmholtz Zentrum München

Modification of radiosensitivity by Curcumin in human pancreatic cancer cell lines.

Sci. Rep. 10:3815 (2020)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Pancreatic cancer is one of the most aggressive malignancies and is characterized by a low 5-year survival rate, a broad genetic diversity and a high resistance to conventional therapies. As a result, novel therapeutic agents to improve the current situation are needed urgently. Curcumin, a polyphenolic colorant derived from Curcuma longa root, showed pleiotropic influences on cellular pathways in vitro and amongst others anti-cancer properties including sensitization of tumor cells to chemo- and radiation-therapy. In this study, we evaluated the impact of Curcumin on the radiosensitivity of the established human pancreatic cancer cell lines Panc-1 and MiaPaCa-2 in vitro. In contrast to MiaPaCa-2 cells, we found a significant radiosensitization by Curcumin in the more radioresistant Panc-1 cells, possibly caused by cell cycle arrest in the most radiation-sensitive G2/M-phase at the time of irradiation. Furthermore, a significant enhancement of radiation-induced apoptosis, DNA-double-strand breaks and G2/M-arrest after curcumin treatment was observed in both cell lines. These in vitro findings suggest that especially patients with more radioresistant tumors could benefit from a radiation-concomitant, phytotherapeutic therapy with Curcumin.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.998
1.365
5
9
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Down-regulation; Up-regulation; Kappa-b; Radiation; Apoptosis; Expression; Induction; Proliferation; Suppression; Activation
Language english
Publication Year 2020
HGF-reported in Year 2020
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Quellenangaben Volume: 10, Issue: 1, Pages: , Article Number: 3815 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
POF-Topic(s) 30203 - Molecular Targets and Therapies
Research field(s) Radiation Sciences
PSP Element(s) G-501300-001
Scopus ID 85080907896
PubMed ID 32123256
Erfassungsdatum 2020-05-11