PuSH - Publication Server of Helmholtz Zentrum München

Li, C.* ; Lotta, L.A.* ; Warner, S.* ; Albrecht, E. ; Allione, A.* ; Arp, P.P.* ; Broer, L.* ; Buxton, J.L.* ; da Silva Couto Alves, A.* ; Deelen, J.* ; Fedko, I.O.* ; Gordon, S.D.* ; Jiang, T.* ; Karlsson, R.* ; Kerrison, N.* ; Loe, T.K.* ; Mangino, M.* ; Milaneschi, Y.* ; Miraglio, B.* ; Pervjakova, N.* ; Russo, A.* ; Surakka, I.* ; van der Spek, A.* ; Verhoeven, J.E.* ; Amin, N.* ; Beekman, M.* ; Blakemore, A.I.* ; Canzian, F.* ; Hamby, S.E.* ; Hottenga, J.J.* ; Jones, P.D.* ; Jousilahti, P.* ; Mägi, R.* ; Medland, S.E.* ; Montgomery, G.W.* ; Nyholt, D.R.* ; Perola, M.* ; Pietiläinen, K.H.* ; Salomaa, V.* ; Sillanpää, E.* ; Suchiman, H.E.* ; van Heemst, D.* ; Willemsen, G.* ; Agudo, A.* ; Boeing, H.* ; Boomsma, D.I.* ; Chirlaque, M.D.* ; Fagherazzi, G.* ; Ferrari, P.* ; Franks, P.* ; Gieger, C. ; Eriksson, J.G.* ; Günter, M.* ; Hägg, S.* ; Hovatta, I.* ; Imaz, L.* ; Kaprio, J.* ; Kaaks, R.* ; Key, T.* ; Krogh, V.* ; Martin, N.G.* ; Melander, O.* ; Metspalu, A.* ; Moreno, C.* ; Onland-Moret, N.C.* ; Nilsson, P.* ; Ong, K.K.* ; Overvad, K.* ; Palli, D.* ; Panico, S.* ; Pedersen, N.L.* ; Penninx, B.W.J.H.* ; Quirós, J.R.* ; Jarvelin, M.R.* ; Rodríguez-Barranco, M.* ; Scott, R.A.* ; Severi, G.* ; Slagboom, P.E.* ; Spector, T.D.* ; Tjonneland, A.* ; Trichopoulou, A.* ; Tumino, R.* ; Uitterlinden, A.G.* ; van der Schouw, Y.T.* ; van Duijn, C.M.* ; Weiderpass, E.* ; Denchi, E.L.* ; Matullo, G.* ; Samani, N.J.* ; Wareham, N.J.* ; Nelson, C.P.* ; Langenberg, C.* ; Codd, V.*

Genome-wide association analysis in humans links nucleotide metabolism to leukocyte telomere length.

Am. J. Hum. Genet. 106, 389-404 (2020)
Postprint Research data DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1 , PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
10.502
2.439
27
29
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Age-related Disease ; Biological Aging ; Mendelian Randomisation ; Telomere Length; Mendelian Randomization; Risk; Variants; Disease; Cancer; Loci; Database; Genes; Heart; Gwas
Language english
Publication Year 2020
HGF-reported in Year 2020
ISSN (print) / ISBN 0002-9297
e-ISSN 1537-6605
Quellenangaben Volume: 106, Issue: 3, Pages: 389-404 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place New York, NY
Reviewing status Peer reviewed
Institute(s) Institute of Epidemiology (EPI)
POF-Topic(s) 30202 - Environmental Health
Research field(s) Genetics and Epidemiology
PSP Element(s) G-504091-004
Scopus ID 85080107195
PubMed ID 32109421
Erfassungsdatum 2020-03-31