Metz, M.C.* ; Molina-Romero, M.* ; Lipkova, J.* ; Gempt, J.* ; Liesche-Starnecker, F.* ; Eichinger, P.* ; Grundl, L.* ; Menze, B.* ; Combs, S.E. ; Zimmer, C.* ; Wiestler, B.*
Predicting glioblastoma recurrence from preoperative MR scans using fractional-anisotropy maps with free-water suppression.
Cancers 12:728 (2020)
Diffusion tensor imaging (DTI), and fractional-anisotropy (FA) maps in particular, have shown promise in predicting areas of tumor recurrence in glioblastoma. However, analysis of peritumoral edema, where most recurrences occur, is impeded by free-water contamination. In this study, we evaluated the benefits of a novel, deep-learning-based approach for the free-water correction (FWC) of DTI data for prediction of later recurrence. We investigated 35 glioblastoma cases from our prospective glioma cohort. A preoperative MR image and the first MR scan showing tumor recurrence were semiautomatically segmented into areas of contrast-enhancing tumor, edema, or recurrence of the tumor. The 10th, 50th and 90th percentiles and mean of FA and mean-diffusivity (MD) values (both for the original and FWC-DTI data) were collected for areas with and without recurrence in the peritumoral edema. We found significant differences in the FWC-FA maps between areas of recurrence-free edema and areas with later tumor recurrence, where differences in noncorrected FA maps were less pronounced. Consequently, a generalized mixed-effect model had a significantly higher area under the curve when using FWC-FA maps (AUC = 0.9) compared to noncorrected maps (AUC = 0.77, p < 0.001). This may reflect tumor infiltration that is not visible in conventional imaging, and may therefore reveal important information for personalized treatment decisions.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Glioblastoma ; Dti ; Fa ; Deep Learning ; Recurrence Prediction; Peritumoral Edema; Diffusion; Differentiation; Elimination; Survival; Gliomas; Volume
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
2072-6694
e-ISSN
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 12,
Issue: 3,
Pages: ,
Article Number: 728
Supplement: ,
Series
Publisher
MDPI
Publishing Place
St Alban-anlage 66, Ch-4052 Basel, Switzerland
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
Research field(s)
Radiation Sciences
PSP Element(s)
G-501300-001
Grants
Copyright
Erfassungsdatum
2020-04-02