Optoacoustic mesoscopy shows potential to increase accuracy of allergy patch testing.
Contact Dermatitis 83, 206-214 (2020)
Background Differentiation between irritant and allergic skin reactions in epicutaneous patch testing is based largely on subjective clinical criteria, with the risk of high intraobserver and interobserver variability. Novel dermatological imaging using optoacoustic mesoscopy allows quantitative three-dimensional assessment of microvascular biomarkers.Objectives We investigated the potential of optoacoustic imaging to improve the precision of patch test evaluation.Methods Sixty-nine test reactions and 48 healthy skin sections in 52 patients with suspected type IV allergy were examined using raster-scan optoacoustic mesoscopy.Results We identified biomarkers from the optoacoustic images. Allergic reactions were associated with higher fragmentation of skin vasculature than irritant reactions (19.5 +/- 9.7 vs 14.3 +/- 3.7 fragments/100 pixels(2); P < .05), as well as lower ratio of low- to high-frequency acoustic signals (1.6 +/- 0.5 vs 2.0 +/- 0.6, P < .05). Allergic reactions graded "++" showed higher vessel fragmentation than reactions graded "+" (25.4 +/- 13.2 vs 17.1 +/- 6.5 fragments/100 pixels(2); P < .05). A linear model combining the biomarkers fragmentation and frequency ratio could differentiate allergic from irritant test reactions with an area under the receiving operator characteristic curve of 0.80 (95% confidence interval 0.64-0.91), reaching a sensitivity of 81% and specificity of 63%.Conclusions Optoacoustic mesoscopy shows potential to help in differentiating between allergic and irritant test reactions based on novel biomarkers that may reflect vasodilation, vessel tortuosity, and edema.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Allergy ; Contact Dermatitis ; Optoacoustic Imaging ; Patch Test ; Photoacoustic Imaging; Optical Coherence Tomography; Irritant Contact-dermatitis; Noninvasive Evaluation; Quantification; Ultrasound; Microscopy; Nickel
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
0105-1873
e-ISSN
1600-0536
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 83,
Issue: 3,
Pages: 206-214
Article Number: ,
Supplement: ,
Series
Publisher
Wiley
Publishing Place
111 River St, Hoboken 07030-5774, Nj Usa
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-505500-001
Grants
Deutsche Forschungsgemeinschaft (DFG)
European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme
European Union's Horizon 2020 research and innovation programme
Copyright
Erfassungsdatum
2020-04-22