Moellmann, J.* ; Klinkhammer, B.M.* ; Droste, P.* ; Kappel, B.* ; Haj-Yehia, E.* ; Maxeiner, S.* ; Artati, A. ; Adamski, J. ; Boor, P.* ; Schütt, K.* ; Lopaschuk, G.D.* ; Verma, S.* ; Marx, N.* ; Lehrke, M.*
Empagliflozin improves left ventricular diastolic function of db/db mice.
Biochim. Biophys. Acta-Mol. Basis Dis. 1866:165807 (2020)
Objectives: Investigation of the effect of SGLT2 inhibition by empagliflozin on left ventricular function in a model of diabetic cardiomyopathy.Background: SGLT2 inhibition is a new strategy to treat diabetes. In the EMPA-REG Outcome trial empagliflozin treatment reduced cardiovascular and overall mortality in patients with diabetes presumably due to beneficial cardiac effects, leading to reduced heart failure hospitalization. The relevant mechanisms remain currently elusive but might be mediated by a shift in cardiac substrate utilization leading to improved energetic supply to the heart.Methods: We used db/db mice on high-fat western diet with or without empagliflozin treatment as a model of severe diabetes. Left ventricular function was assessed by pressure catheter with or without dobutamine stress.Results: Treatment with empagliflozin significantly increased glycosuria, improved glucose metabolism, ameliorated left ventricular diastolic function and reduced mortality of mice. This was associated with reduced cardiac glucose concentrations and decreased calcium/calmodulin-dependent protein kinase (CaMKII) activation with subsequent less phosphorylation of the ryanodine receptor (RyR). No change of cardiac ketone bodies or branched-chain amino acid (BCAA) metabolites in serum was detected nor was cardiac expression of relevant catabolic enzymes for these substrates affected.Conclusions: In a murine model of severe diabetes empagliflozin-dependent SGLT2 inhibition improved diastolic function and reduced mortality. Improvement of diastolic function was likely mediated by reduced spontaneous diastolic sarcoplasmic reticulum (SR) calcium release but independent of changes in cardiac ketone and BCAA metabolism.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Empagliflozin ; Sgtl2 Inhibitors ; Cardiovascular Disease ; Type 2 Diabetes Mellitus ; Branched-chain Amino Acids ; Ketone Bodies; Heart-failure; Ketone-bodies; Inhibition; Hyperglycemia; Dysfunction; Metabolism; Mechanisms; Model
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
0925-4439
e-ISSN
1878-2434
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 1866,
Issue: 8,
Pages: ,
Article Number: 165807
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Radarweg 29, 1043 Nx Amsterdam, Netherlands
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
Institute(s)
Molekulare Endokrinologie und Metabolismus (MEM)
POF-Topic(s)
30201 - Metabolic Health
Research field(s)
Genetics and Epidemiology
PSP Element(s)
G-505600-003
Grants
Copyright
Erfassungsdatum
2020-06-04