PuSH - Publication Server of Helmholtz Zentrum München

Ruiz, A.J.* ; Wu, M.* ; LaRochelle, E.P.M.* ; Gorpas, D. ; Ntziachristos, V. ; Pfefer, T.J.* ; Pogue, B.W.*

Indocyanine green matching phantom for fluorescence-guided surgery imaging system characterization and performance assessment.

J. Biomed. Opt. 25, 1-15 (2020)
Publ. Version/Full Text DOI PMC
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
SIGNIFICANCE: Expanded use of fluorescence-guided surgery with devices approved for use with indocyanine green (ICG) has led to a range of commercial systems available. There is a compelling need to be able to independently characterize system performance and allow for cross-system comparisons. AIM: The goal of this work is to expand on previous proposed fluorescence imaging standard designs to develop a long-term stable phantom that spectrally matches ICG characteristics and utilizes 3D printing technology for incorporating tissue-equivalent materials. APPROACH: A batch of test targets was created to assess ICG concentration sensitivity in the 0.3- to 1000-nM range, tissue-equivalent depth sensitivity down to 6 mm, and spatial resolution with a USAF test chart. Comparisons were completed with a range of systems that have significantly different imaging capabilities and applications, including the Li-Cor® Odyssey, Li-Cor® Pearl, PerkinElmer® Solaris, and Stryker® Spy Elite. RESULTS: Imaging of the ICG-matching phantoms with all four commercially available systems showed the ability to benchmark system performance and allow for cross-system comparisons. The fluorescence tests were able to assess differences in the detectable concentrations of ICG with sensitivity differences >10× for preclinical and clinical systems. Furthermore, the tests successfully assessed system differences in the depth-signal decay rate, as well as resolution performance and image artifacts. The manufacturing variations, photostability, and mechanical design of the tests showed promise in providing long-term stable standards for fluorescence imaging. CONCLUSIONS: The presented ICG-matching phantom provides a major step toward standardizing performance characterization and cross-system comparisons for devices approved for use with ICG. The developed hybrid manufacturing platform can incorporate long-term stable fluorescing agents with 3D printed tissue-equivalent material. Further, long-term testing of the phantom and refinements to the manufacturing process are necessary for future implementation as a widely adopted fluorescence imaging standard.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Fluorescence-guided Surgery ; Imaging Standard ; Indocyanine Green ; Surgery ; Tissue Simulating Phantoms
ISSN (print) / ISBN 1083-3668
e-ISSN 1560-2281
Quellenangaben Volume: 25, Issue: 5, Pages: 1-15 Article Number: , Supplement: ,
Publisher SPIE
Non-patent literature Publications
Reviewing status Peer reviewed