Leiss, V.* ; Schönsiegel, A.* ; Gnad, T.* ; Kerner, J.* ; Kaur, J.* ; Sartorius, T. ; Machann, J. ; Schick, F.* ; Birnbaumer, L.* ; Häring, H.U.* ; Pfeifer, A.* ; Nürnberg, B.*
Lack of Gαi2 proteins in adipocytes attenuates diet-induced obesity.
Mol. Metab. 40:101029 (2020)
Objectives: Typically, obesity results from an inappropriate balance between energy uptake from nutrient consumption and burning of calories, which leads to a pathological increase in fat mass. Obesity is a major cause of insulin resistance and diabetes. Inhibitory G proteins (G alpha(i)) form a subfamily that is involved in the regulation of adipose tissue function. Among the three Gai members, i.e. G alpha(i1), G alpha(i2), G alpha(i3), the G alpha(i2), protein is predominantly expressed in adipose tissue. However, the functions of the G alpha(i2) isoform in adipose tissue and its impact on the development of obesity are poorly understood.Methods: By using AdipoqCreER(T2) mice, we generated adipocyte-specific Gnai2-deficient mice to study G alpha(i2) function, specifically in white and brown adipocytes. These mice were fed either a control diet (CD) or a high fat diet (HFD). Mice were examined for obesity development, insulin resistance and glucose intolerance. We examined adipocyte morphology and the development of inflammation in the white adipose tissue. Finally, intracellular cAMP levels as an indicator of Gai signaling and glycerol release as an indicator of lipolysis rates were measured to verify the impact of G alpha(i2) on the signaling pathway in brown and white adipocytes.Results: An adipocyte-specific deficiency of G alpha(i2) significantly reduced diet-induced obesity, leading to decreased fat masses, smaller adipocytes and decreased inflammation in the white adipose tissue relative to littermate controls. Concurrently, oxygen consumption of brown adipocytes and in vivo measured energy expenditure were significantly enhanced. In addition, glucose tolerance and insulin sensitivity of HFD-fed adipocyte-specific Gnai2-deficient mice were improved compared to the respective controls. In the absence of G alpha(i2), adrenergic stimulation of intracellular adipocyte cAMP levels was increased, which correlated with increased lipolysis and energy expenditure.Conclusion: We conclude that adipocyte G alpha(i2) is a major regulator of adipocyte lipid content in diet-induced obesity by inhibiting adipocyte lipolysis in a cAMP-dependent manner resulting in increased energy expenditure.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Adipocytes ; Brown Adipose Tissue ; Gnai2 ; G Proteins ; High Fat Diet ; Insulin ; Obesity ; White Adipose Tissue; Adipose-tissue; Insulin; Alpha; Inflammation; Expression; Resistance; Lipolysis; G(i3); Il-6
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
2212-8778
e-ISSN
2212-8778
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 40,
Issue: ,
Pages: ,
Article Number: 101029
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Amsterdam
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
90000 - German Center for Diabetes Research
Research field(s)
Helmholtz Diabetes Center
PSP Element(s)
G-502400-001
Grants
Intramural Research Program of the NIH
German Research Foundation (DFG)
Copyright
Erfassungsdatum
2020-07-07