Burton, A. ; Brochard, V.* ; Galan, C.* ; Ruiz-Morales, E.R.* ; Rovira, Q.* ; Rodriguez-Terrones, D.* ; Kruse, K.* ; Le Gras, S.* ; Udayakumar, V.S.* ; Chin, H.G.* ; Eid, A. ; Liu, X.* ; Wang, C.* ; Gao, S.* ; Pradhan, S.* ; Vaquerizas, J.M.* ; Beaujean, N.* ; Jenuwein, T.* ; Torres-Padilla, M.E.
Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3.
Nat. Cell Biol. 22, 767-778 (2020)
Following fertilization in mammals, the gametes are reprogrammed to create a totipotent zygote, a process that involves de novo establishment of chromatin domains. A major feature occurring during preimplantation development is the dramatic remodelling of constitutive heterochromatin, although the functional relevance of this is unknown. Here, we show that heterochromatin establishment relies on the stepwise expression and regulated activity of SUV39H enzymes. Enforcing precocious acquisition of constitutive heterochromatin results in compromised development and epigenetic reprogramming, which demonstrates that heterochromatin remodelling is essential for natural reprogramming at fertilization. We find that de novo H3K9 trimethylation (H3K9me3) in the paternal pronucleus after fertilization is catalysed by SUV39H2 and that pericentromeric RNAs inhibit SUV39H2 activity and reduce H3K9me3. De novo H3K9me3 is initially non-repressive for gene expression, but instead bookmarks promoters for compaction. Overall, we uncover the functional importance for the restricted transmission of constitutive heterochromatin during reprogramming and a non-repressive role for H3K9me3.Burton et al. show that H3K9me3 deposition catalysed by SUV39H2 and regulated by pericentromeric RNAs in the mouse paternal pronucleus does not suppress gene expression, but bookmarks promoters for compaction.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
H3 Lysine-9 Methylation; Histone Modification; Nuclear Transfer; Dna Methylation; Gene-expression; Read Alignment; Cloned Embryos; Stem-cells; Chromatin; Seq
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
1465-7392
e-ISSN
1476-4679
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 22,
Issue: 7,
Pages: 767-778
Article Number: ,
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
Macmillan Building, 4 Crinan St, London N1 9xw, England
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30204 - Cell Programming and Repair
Research field(s)
Stem Cell and Neuroscience
PSP Element(s)
G-506200-001
Grants
Copyright
Erfassungsdatum
2020-07-16