Deep tissue volumetric optoacoustic tracking of individual circulating tumor cells in an in intracardially perfused mouse model.
Neoplasia 22, 441-446 (2020)
Widespread metastasis is the major cause of death from melanoma and other types of cancer. At present, the dynamic aspects of the metastatic cascade remain enigmatic. The feasibility to track circulating melanoma cells deep within living intact organisms can greatly impact our knowledge on tumor metastasis, but existing imaging approaches lack the sensitivity, spatio-temporal resolution or penetration depth to capture flowing tumor cells over large fields of view within optically-opaque biological tissues. Vast progress with the development of optoacoustic tomography technologies has recently enabled two- and three-dimensional imaging at unprecedented frame rates in the order of hundreds of Hertz, effectively mapping up to a million image voxels within a single volumetric snapshot. Herein, we employ volumetric optoacoustic tomography for real-time visualization of passage and trapping of individual B16 melanoma cells in the whole mouse brain. Detection of individual circulating melanoma cells was facilitated by substituting blood with an artificial cerebrospinal fluid that removes the strong absorption background in the optoacoustic images. The approach can provide new opportunities for studying trafficking and accumulation of metastatic melanoma cells in different organs.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Cell Tracking ; Optoacoustic Imaging ; Metastasis ; Circulating Tumor Cells ; Single-cell Imaging; Photoacoustic Detection; Melanoma-cells; Microscopy; Flow
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
1522-8002
e-ISSN
1476-5586
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 22,
Issue: 9,
Pages: 441-446
Article Number: ,
Supplement: ,
Series
Publisher
Neoplasia Press
Publishing Place
Ste 800, 230 Park Ave, New York, Ny 10169 Usa
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-505590-001
G-505500-001
G-505591-004
Grants
Copyright
Erfassungsdatum
2020-09-29