Baslam, M.* ; Mitsui, T.* ; Hodges, M.* ; Priesack, E. ; Herritt, M.T.* ; Aranjuelo, I.* ; Sanz-Sáez, Á.*
Photosynthesis in a changing global climate: Scaling up and scaling down in crops.
Front. Plant Sci. 11:882 (2020)
Photosynthesis is the major process leading to primary production in the Biosphere. There is a total of 7000bn tons of CO(2)in the atmosphere and photosynthesis fixes more than 100bn tons annually. The CO(2)assimilated by the photosynthetic apparatus is the basis of crop production and, therefore, of animal and human food. This has led to a renewed interest in photosynthesis as a target to increase plant production and there is now increasing evidence showing that the strategy of improving photosynthetic traits can increase plant yield. However, photosynthesis and the photosynthetic apparatus are both conditioned by environmental variables such as water availability, temperature, [CO2], salinity, and ozone. The "omics" revolution has allowed a better understanding of the genetic mechanisms regulating stress responses including the identification of genes and proteins involved in the regulation, acclimation, and adaptation of processes that impact photosynthesis. The development of novel non-destructive high-throughput phenotyping techniques has been important to monitor crop photosynthetic responses to changing environmental conditions. This wealth of data is being incorporated into new modeling algorithms to predict plant growth and development under specific environmental constraints. This review gives a multi-perspective description of the impact of changing environmental conditions on photosynthetic performance and consequently plant growth by briefly highlighting how major technological advances including omics, high-throughput photosynthetic measurements, metabolic engineering, and whole plant photosynthetic modeling have helped to improve our understanding of how the photosynthetic machinery can be modified by different abiotic stresses and thus impact crop production.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Review
Thesis type
Editors
Keywords
Photosynthesis ; Climate Change ; Crop Improvement ; -omics ; Phenotyping ; Modeling; Genome-wide Association; Quantitative Trait Loci; Chlorophyll Fluorescence Parameters; Natural Genetic-variation; Leaf Optical-properties; Light Use Efficiency; Co2 Enrichment Face; Electron-transport; Elevated Co2; Alternative Oxidase
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
1664-462X
e-ISSN
1664-462X
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 11,
Issue: ,
Pages: ,
Article Number: 882
Supplement: ,
Series
Publisher
Frontiers
Publishing Place
Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504912-001
Grants
Copyright
Erfassungsdatum
2020-10-02