PuSH - Publication Server of Helmholtz Zentrum München

Luteijn, R.D.* ; Praest, P.* ; Thiele, F. ; Sadasivam, S.M.* ; Singethan, K. ; Drijfhout, J.W.* ; Bach, C.E. ; de Boer, S.M.* ; Lebbink, R.J.* ; Tao, S.* ; Helfer, M.* ; Bach, N.C.* ; Protzer, U. ; Costa, A.I.* ; Killian, J.A.* ; Drexler, I.* ; Wiertz, E.J.H.J.*

A broad-spectrum antiviral peptide blocks infection of viruses by binding to phosphatidylserine in the viral envelope.

Cells 9:1989 (2020)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The ongoing threat of viral infections and the emergence of antiviral drug resistance warrants a ceaseless search for new antiviral compounds. Broadly-inhibiting compounds that act on elements shared by many viruses are promising antiviral candidates. Here, we identify a peptide derived from the cowpox virus protein CPXV012 as a broad-spectrum antiviral peptide. We found that CPXV012 peptide hampers infection by a multitude of clinically and economically important enveloped viruses, including poxviruses, herpes simplex virus-1, hepatitis B virus, HIV-1, and Rift Valley fever virus. Infections with non-enveloped viruses such as Coxsackie B3 virus and adenovirus are not affected. The results furthermore suggest that viral particles are neutralized by direct interactions with CPXV012 peptide and that this cationic peptide may specifically bind to and disrupt membranes composed of the anionic phospholipid phosphatidylserine, an important component of many viral membranes. The combined results strongly suggest that CPXV012 peptide inhibits virus infections by direct interactions with phosphatidylserine in the viral envelope. These results reiterate the potential of cationic peptides as broadly-acting virus inhibitors.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.366
0.000
6
9
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Antiviral Peptide ; Enveloped Viruses ; Membrane Phosphatidylserine ; Envelope Disruption; Human Cathelicidin Ll-37; Vaccinia Virus; Antimicrobial Peptides; Apoptotic Mimicry; Uukuniemi Virus; In-vitro; Membrane; Particles; Protein; Entry
Language english
Publication Year 2020
HGF-reported in Year 2020
ISSN (print) / ISBN 2073-4409
e-ISSN 2073-4409
Journal Cells
Quellenangaben Volume: 9, Issue: 9, Pages: , Article Number: 1989 Supplement: ,
Publisher MDPI
Publishing Place Basel
POF-Topic(s) 30203 - Molecular Targets and Therapies
Research field(s) Immune Response and Infection
PSP Element(s) G-502700-003
Grants DFG
seventh framework program of the European Union (Initial Training Network "ManiFold")
European Commission under the Horizon2020 program H2020 MSCA-ITN
Scopus ID 85090180498
PubMed ID 32872420
Erfassungsdatum 2020-10-29