Bissinger, R.* ; Petkova-Kirova, P.* ; Mykhailova, O.* ; Oldenborg, P.A.* ; Novikova, E.* ; Donkor, D.A.* ; Dietz, T.* ; Bhuyan, A.A.M.* ; Sheffield, W.P.* ; Grau, M.* ; Artunc, F. ; Kaestner, L.* ; Acker, J.P.* ; Qadri, S.M.*
     
    
        
Thrombospondin-1/CD47 signaling modulates transmembrane cation conductance, survival, and deformability of human red blood cells.
    
    
        
    
    
        
        Cell Commun. Signal. 18:155 (2020)
    
    
    
      
      
	
	    Background: Thrombospondin-1 (TSP-1), a Ca2+-binding trimeric glycoprotein secreted by multiple cell types, has been implicated in the pathophysiology of several clinical conditions. Signaling involving TSP-1, through its cognate receptor CD47, orchestrates a wide array of cellular functions including cytoskeletal organization, migration, cell-cell interaction, cell proliferation, autophagy, and apoptosis. In the present study, we investigated the impact of TSP-1/CD47 signaling on Ca2+ dynamics, survival, and deformability of human red blood cells (RBCs).Methods: Whole-cell patch-clamp was employed to examine transmembrane cation conductance. RBC intracellular Ca2+ levels and multiple indices of RBC cell death were determined using cytofluorometry analysis. RBC morphology and microvesiculation were examined using imaging flow cytometry. RBC deformability was measured using laser-assisted optical rotational cell analyzer.Results: Exposure of RBCs to recombinant human TSP-1 significantly increased RBC intracellular Ca2+ levels. As judged by electrophysiology experiments, TSP-1 treatment elicited an amiloride-sensitive inward current alluding to a possible Ca2+ influx via non-selective cation channels. Exogenous TSP-1 promoted microparticle shedding as well as enhancing Ca2+- and nitric oxide-mediated RBC cell death. Monoclonal (mouse IgG1) antibody-mediated CD47 ligation using 1F7 recapitulated the cell death-inducing effects of TSP-1. Furthermore, TSP-1 treatment altered RBC cell shape and stiffness (maximum elongation index).Conclusions: Taken together, our data unravel a new role for TSP-1/CD47 signaling in mediating Ca2+ influx into RBCs, a mechanism potentially contributing to their dysfunction in a variety of systemic diseases.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Thrombospondin-1 ; Cd47 ; Red Blood Cells ; Calcium ; Cation Channels ; Deformability; Integrin-associated Protein; Dependent Inhibition; Cd47; Death; Activation; Responses; Plasma; Health; Microparticles; Expression
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2020
    
 
    
        Prepublished in Year
        
    
 
    
        HGF-reported in Year
        2020
    
 
    
    
        ISSN (print) / ISBN
        1478-811X
    
 
    
        e-ISSN
        1478-811X
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 18,  
	    Issue: 1,  
	    Pages: ,  
	    Article Number: 155 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            BioMed Central
        
 
        
            Publishing Place
            Campus, 4 Crinan St, London N1 9xw, England
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        90000 - German Center for Diabetes Research
    
 
    
        Research field(s)
        Helmholtz Diabetes Center
    
 
    
        PSP Element(s)
        G-502400-001
    
 
    
        Grants
        Projekt DEAL
Canadian government
CBS postdoctoral fellowship
Faculty of Medicine, Umea University
Swedish Research Council
Deutsche Forschungsgemeinschaft
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2020-11-10