Michas, A. ; Harir, M. ; Lucio, M. ; Vestergaard, G.* ; Himmelberg, A.M. ; Schmitt-Kopplin, P. ; Lueders, T.* ; Hatzinikolaou, D.G.* ; Schöler, A.* ; Rabus, R.* ; Schloter, M.
Sulfate alters the competition among microbiome members of sediments chronically exposed to asphalt.
Front. Microbiol. 11:556793 (2020)
Sulfate-reducing microorganisms (SRMs) often compete with methanogens for common substrates. Due to thermodynamic reasons, SRMs should outcompete methanogens in the presence of sulfate. However, many studies have documented coexistence of these microbial groups in natural environments, suggesting that thermodynamics alone cannot explain the interactions among them. In this study, we investigated how SRMs compete with the established methanogenic communities in sediment from a long-term, electron acceptor-depleted, asphalt-exposed ecosystem and how they affect the composition of the organic material. We hypothesized that, upon addition of sulfate, SRMs (i) outcompete the methanogenic communities and (ii) markedly contribute to transformations of the organic material. We sampled sediments from the test and proximate control sites under anoxic conditions and incubated them in seawater medium with or without sulfate. Abundance and activity pattern of SRMs and methanogens, as well as the total prokaryotic community, were followed for 6 weeks by using qPCR targeting selected marker genes. Some of these genes were also subjected to amplicon sequencing to assess potential shifts in diversity patterns. Alterations of the organic material in the microcosms were determined by mass spectrometry. Our results indicate that the competition of SRMs with methanogens upon sulfate addition strongly depends on the environment studied and the starting microbiome composition. In the asphalt-free sediments (control), the availability of easily degradable organic material (mainly plant-derived) allows SRMs to use a larger variety of substrates, reducing interspecies competition with methanogens. In contrast, the abundant presence of recalcitrant compounds in the asphalt-exposed sediment was associated with a strong competition between SRMs and methanogens, ultimately detrimental for the latter. Our data underpin the importance of the quality of bioavailable organic materials in anoxic environments as a driver for microbial community structure and function.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Sediment Microbiomes ; Asphalt Exposure ; Sulfate-reducing Microorganisms ; Methanogens ; Competition ; Organic Material; Sp Nov.; Methanogenic Bacteria; Methane Production; Marine Sediment; Rapid Method; Reduction; Gene; Degradation; Community; Sulfur
Keywords plus
Language
english
Publication Year
2020
Prepublished in Year
HGF-reported in Year
2020
ISSN (print) / ISBN
1664-302X
e-ISSN
1664-302X
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 11,
Issue: ,
Pages: ,
Article Number: 556793
Supplement: ,
Series
Publisher
Frontiers
Publishing Place
Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
20403 - Sustainable Water Management
Research field(s)
Environmental Sciences
PSP Element(s)
G-504700-001
G-504800-001
G-504300-005
Grants
Petros Kokkoros Bequest, Greece
Copyright
Erfassungsdatum
2020-11-05